| md.pairs {mice} | R Documentation |
Missing data pattern by variable pairs
Description
Number of observations per variable pair.
Usage
md.pairs(data)
Arguments
data |
A data frame or a matrix containing the incomplete data. Missing
values are coded as |
Details
The four components in the output value is have the following interpretation:
- list('rr')
response-response, both variables are observed
- list('rm')
response-missing, row observed, column missing
- list('mr')
missing -response, row missing, column observed
- list('mm')
missing -missing, both variables are missing
Value
A list of four components named rr, rm, mr and
mm. Each component is square numerical matrix containing the number
observations within four missing data pattern.
Author(s)
Stef van Buuren, Karin Groothuis-Oudshoorn, 2009
References
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice:
Multivariate Imputation by Chained Equations in R. Journal of
Statistical Software, 45(3), 1-67.
doi:10.18637/jss.v045.i03
Examples
pat <- md.pairs(nhanes)
pat
# show that these four matrices decompose the total sample size
# for each pair
pat$rr + pat$rm + pat$mr + pat$mm
# percentage of usable cases to impute row variable from column variable
round(100 * pat$mr / (pat$mr + pat$mm))