with_graph {micd} | R Documentation |
Evaluate Causal Graph Discovery Algorithm in Multiple Imputed Data sets
Description
Evaluate Causal Graph Discovery Algorithm in Multiple Imputed Data sets
Usage
with_graph(data, algo = c("pc", "fci", "fciPlus", "ges"), args, score = FALSE)
Arguments
data |
An object of type mids, which stands for 'multiply imputed data set', typically created by a call to function mice() |
algo |
An algorithm for causal discovery from the package 'pcalg' (see details). |
args |
Additional arguments passed to the algo. Must be a string vector starting with comma, i.e. ", ..." |
score |
Logical indicating whether a score-based or a constrained-based algorithm is applied. |
Value
A list object of S3 class mice::mira-class
.
Examples
data(windspeed)
dat <- as.matrix(windspeed)
## delete some observations
set.seed(123)
dat[sample(1:length(dat), 260)] <- NA
## Impute missing values under normal model
imp <- mice(dat, method = "norm", printFlag = FALSE)
mylabels <- names(imp$imp)
out.fci <- with_graph(data = imp,
algo = "fciPlus",
args = ", indepTest = gaussCItest, verbose = FALSE,
labels = mylabels, alpha = 0.01")
out.ges <- with_graph(data = imp, algo = "ges", arg = NULL, score = TRUE)
if (requireNamespace("Rgraphviz", quietly = TRUE)){
oldpar <- par(mfrow = c(1,2))
plot(out.fci$res[[1]])
plot(out.ges$res[[1]]$essgraph)
par(oldpar)
}
[Package micd version 1.1.1 Index]