gaussMItest {micd} | R Documentation |
Test Conditional Independence of Gaussians via Fisher's Z Using Multiple Imputations
Description
A modified version of pcalg::gaussCItest
,
to be used within
pcalg::skeleton
, pcalg::pc
or
pcalg::fci
when multiply imputated data sets are available.
Usage
gaussMItest(x, y, S, suffStat)
gaussCItestMI(x, y, S = NULL, data)
Arguments
x , y , S |
(Integer) position of variable X, Y and set of variables S, respectively, in the adjacency matrix. It is tested, whether X and Y are conditionally independent given the subset S of the remaining nodes. |
suffStat |
A list of length m+1, where m is the number of imputations; the first m elements are the covariance matrices of the m imputed data sets, the m-th element is the sample size. Can be obtained from a mids object by getSuff(mids, test="gaussMItest") |
data |
An object of type mids, which stands for 'multiply imputed data set', typically created by a call to function mice() |
Details
gaussMItest
is faster, as it uses pre-calculated covariance matrices.
Value
A p-value.
Examples
## load data (numeric variables)
dat <- as.matrix(windspeed)
## delete some observations
set.seed(123)
dat[sample(1:length(dat), 260)] <- NA
## Impute missing values under normal model
imp <- mice(dat, method = "norm", printFlag = FALSE)
## analyse data
# complete data:
suffcomplete <- getSuff(windspeed, test = "gaussCItest")
gaussCItest(1, 2, c(4,5), suffStat = suffcomplete)
# multiple imputation:
suffMI <- getSuff(imp, test = "gaussMItest")
gaussMItest(1, 2, c(4,5), suffStat = suffMI)
gaussCItestMI(1, 2, c(4,5), data = imp)
# test-wise deletion:
gaussCItwd(1, 2, c(4,5), suffStat = dat)
# list-wise deletion:
dat2 <- dat[complete.cases(dat), ]
sufflwd <- getSuff(dat2, test = "gaussCItest")
gaussCItest(1, 2, c(4,5), suffStat = sufflwd)
## use gaussMItest or gaussCItestMI within pcalg::pc
(pc.fit <- pc(suffStat = suffMI, indepTest = gaussMItest, alpha = 0.01, p = 6))
(pc.fit <- pc(suffStat = imp, indepTest = gaussCItestMI, alpha = 0.01, p = 6))