gaussCItwd {micd} | R Documentation |
Fisher's z-Test for (Conditional) Independence between Gaussian Variables with Missings
Description
A wrapper for pcalg::gaussCItest
,
to be used within pcalg::skeleton
, pcalg::pc
or
pcalg::fci
when the data contain missing values. Observations
where at least one of the variables involved in the test is missing are
deleted prior to performing the test (test-wise deletion).
Usage
gaussCItwd(x, y, S = NULL, suffStat)
Arguments
x , y , S |
(integer) position of variable X, Y and set of variables S,
respectively, in each correlation matrix in |
suffStat |
|
Value
See pcalg::gaussCItest
for details on
Fisher's z-test. Test-wise deletion is valid if missingness does not jointly
depend on X and Y.
A p-value.
See Also
pcalg::condIndFisherZ()
for complete data, gaussCItestMI()
for multiply imputed data
Examples
## load data (numeric variables)
dat <- as.matrix(windspeed)
## delete some observations
set.seed(123)
dat[sample(1:length(dat), 260)] <- NA
## analyse data
# complete data:
suffcomplete <- getSuff(windspeed, test="gaussCItest")
gaussCItest(1, 2, c(4,5), suffStat = suffcomplete)
# test-wise deletion: ==========
gaussCItwd(1, 2, c(4,5), suffStat = dat)
# list-wise deletion: ==========
sufflwd <- getSuff(dat[complete.cases(dat), ], test="gaussCItest")
gaussCItest(1, 2, c(4,5), suffStat = sufflwd)
## use gaussCItwd within pcalg::pc
pc.fit <- pc(suffStat = dat, indepTest = gaussCItwd, alpha = 0.01, p = 6)
pc.fit