disMItest {micd} | R Documentation |
G square Test for (Conditional) Independence between Discrete Variables after Multiple Imputation
Description
A modified version of pcalg::disCItest
, to be used within
pcalg::skeleton
, pcalg::pc
or
pcalg::fci
when multiply imputed data sets are available.
Note that in contrast to pcalg::disCItest
, the variables must
here be coded as factors.
Usage
disMItest(x, y, S = NULL, suffStat)
Arguments
x , y , S |
(Integer) position of variable X, Y and set of variables S,
respectively, in |
suffStat |
A list of |
Details
See pcalg::disCItest
for details on the G square test. disMItest applies this test to each
data.frame
in suffStat
, then combines the results using the rules
in Meng & Rubin (1992). Degrees of freedom are never adapted, and there is no
minimum required sample size, while pcalg::disCItest
requires
10*df
observations and otherwise returns a p-value of 1.
Value
A p-value.
Author(s)
Janine Witte
References
Meng X.-L., Rubin D.B. (1992): Performing likelihood ratio tests with multiply imputed data sets. Biometrika 79(1):103-111.
See Also
pcalg::disCItest
for complete data,
disCItwd
for test-wise deletion
Examples
## load data (200 observations) and factorise
data(gmD)
dat <- gmD$x[1:1000, ]
dat[] <- lapply(dat, as.factor)
## delete some observations of X2 and X3
set.seed(123)
dat[sample(1:1000, 40), 2] <- NA
dat[sample(1:1000, 40), 3] <- NA
## impute missing values under model with two-way interactions
form <- make.formulas.saturated(dat, d = 2)
imp <- mice::mice(dat, formulas = form, printFlag = FALSE)
imp <- mice::complete(imp, action = "all")
## analyse imputed data
disMItest(1, 3, NULL, suffStat = imp)
## use disMItest within pcalg::pc
pc.fit <- pc(suffStat = imp, indepTest = disMItest, alpha = 0.01, p = 5)
pc.fit
if(require("Rgraphviz", character.only = TRUE, quietly = TRUE)){
plot(pc.fit)
}