boot.graph {micd} | R Documentation |
Bootstrap Resampling for the PC-MI- and the FCI-MI-algorithm
Description
Generate R bootstrap replicates for the PC or FCI algorithm for data with missing values.
Usage
boot.graph(
data,
select = NULL,
method = c("pcMI", "fciMI"),
method.mice = NULL,
args,
R,
m = 10,
args.residuals = NULL,
seed = NA,
quickpred = FALSE,
...
)
Arguments
data |
Data.frame with missing values |
select |
Variable of integers, indicating columns to select from a data frame; only continuous variables can be included in the model selection |
method |
Character string specifying the algorithm for causal discovery from the package 'pcalg'. |
method.mice |
Character string specifying imputation method; see |
args |
Arguments passed to |
R |
A positive integer number of bootstrap replications. |
m |
Number of chains included in mice()'. |
args.residuals |
(Optional) list containing vertices and confounders.
May be specified when residuals for vertices should be calculated in each bootstrap
data set. See |
seed |
A positive integer that is used as argument for set.seed(). |
quickpred |
If true, mice uses quickpred to select predictors. |
... |
Further arguments passed to the imputation function |
Value
List of objects of class pcalgo
(see pcalg::pcAlgo)
or of fcmialgo
(see pcalg::fciAlgo).
Examples
data(windspeed)
daten <- mice::ampute(windspeed)$amp
bgraph <- boot.graph(data = daten,
method = "pcMI",
args = "solve.confl = TRUE, alpha = 0.05",
R = 5)