choose_lag_fit_algorithm_logistic {miLAG} | R Documentation |
choose_lag_fit_algorithm_logistic
Description
Runs nlsLM/nls algorithms with three different parameter setups to fit the best Logistic model parameters to our data and chooses the best model
Usage
choose_lag_fit_algorithm_logistic(
gr_curve,
n0,
init_gr_rate = init_gr_rate,
init_K = init_K,
init_lag = init_lag,
max_iter = 100,
lower_bound = c(0, 0, 0)
)
Arguments
gr_curve |
data from one specific growth curve with the following columns: LOG10N, t |
n0 |
the initial biomass |
init_gr_rate |
initial value for the growth rate |
init_K |
initial value for the saturation parameter K |
init_lag |
initial value for the lag parameter |
max_iter |
max. number of iterations; defaults to 100 |
lower_bound |
lower bound for the bounded nls optimization; defaults to 0 |
Value
the best nls fitting object with parameters fitted to logistic model (lowest Res.Sum Sq provided that all coefficients are nonnegative)
[Package miLAG version 1.0.2 Index]