mHR2 {mhazard} | R Documentation |
Cox regression for a bivariate outcome
Description
Fits a semiparametric Cox regression model for a bivariate outcome. This function computes the regression coefficients, baseline hazards, and sandwich estimates of the standard deviation of the regression coefficients. If desired, estimates of the survival function F and marginal hazard rates Lambda11 can be computed using the mHR2.LF function.
Usage
mHR2(Y1, Y2, Delta1, Delta2, X)
Arguments
Y1 , Y2 |
Vectors of event times (continuous). |
Delta1 , Delta2 |
Vectors of censoring indicators (1=event, 0=censored). |
X |
Matrix of covariates (continuous or binary). |
Value
A list containing the following elements:
- Y1, Y2:
Original vectors of event times
- Delta1, Delta2:
Original vectors of censoring indicators
- X:
Original covariate matrix
- n10, n01:
Total number of events for the first/second outcome
- n11:
Total number of double events
- beta10, beta01, beta11:
Regression coefficient estimates
- lambda10, lambda01, lambda11:
Baseline hazard estimates
- SD.beta10, SD.beta01, SD.beta11:
Sandwich estimates of the standard deviation of the regression coefficients
- SD.beta10.cox, SD.beta01.cox:
Standard deviation estimates for the regression coefficients based on a univariate Cox model
References
Prentice, R., Zhao, S. "The statistical analysis of multivariate failure time data: A marginal modeling approach", CRC Press (2019). Prentice, R., Zhao, S. "Regression models and multivariate life tables", Journal of the American Statistical Association (2021) 116(535): 1330-1345. https://doi.org/10.1080/01621459.2020.1713792
See Also
Examples
x <- genClaytonReg(1000, 2, 0.5, 1, 1, log(2), log(2), log(8/3), 2, 2)
x.mHR2 <- mHR2(x$Y1, x$Y2, x$Delta1, x$Delta2, x$X)