plotmggd {mggd} | R Documentation |
Plot of the Bivariate Generalised Gaussian Density
Description
Plots the probability density of the generalised Gaussian distribution with 2 variables
with mean vector mu
, dispersion matrix Sigma
and shape parameter beta
.
Usage
plotmggd(mu, Sigma, beta, xlim = c(mu[1] + c(-10, 10)*Sigma[1, 1]),
ylim = c(mu[2] + c(-10, 10)*Sigma[2, 2]), n = 101,
xvals = NULL, yvals = NULL, xlab = "x", ylab = "y",
zlab = "f(x,y)", col = "gray", tol = 1e-6, ...)
Arguments
mu |
length 2 numeric vector. |
Sigma |
symmetric, positive-definite square matrix of order 2. The dispersion matrix. |
beta |
positive real number. The shape of the distribution. |
xlim , ylim |
x-and y- limits. |
n |
A one or two element vector giving the number of steps in the x and y grid, passed to |
xvals , yvals |
The values at which to evaluate |
xlab , ylab , zlab |
The axis labels. |
col |
The color to use for the plot. See |
tol |
tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma, for the estimation of the density. see |
... |
Additional arguments to pass to |
Value
Returns invisibly the probability density function.
Author(s)
Pierre Santagostini, Nizar Bouhlel
References
E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. doi:10.1080/03610929808832115
See Also
contourmggd
: contour plot of a bivariate generalised Gaussian density.
dmggd
: Probability density of a multivariate generalised Gaussian distribution.
Examples
mu <- c(1, 4)
Sigma <- matrix(c(0.8, 0.2, 0.2, 0.2), nrow = 2)
beta <- 0.74
plotmggd(mu, Sigma, beta)