estparmggd {mggd} | R Documentation |
Estimation of the Parameters of a Multivariate Generalized Gaussian Distribution
Description
Estimation of the mean vector, dispersion matrix and shape parameter of a multivariate generalized Gaussian distribution (MGGD).
Usage
estparmggd(x, eps = 1e-6, display = FALSE, plot = display)
Arguments
x |
numeric matrix or data frame. |
eps |
numeric. Precision for the estimation of the beta parameter. |
display |
logical. When |
plot |
logical. When |
Details
The \mu
parameter is the mean vector of x
.
The dispersion matrix \Sigma
and shape parameter: \beta
are computed
using the method presented in Pascal et al., using an iterative algorithm.
The precision for the estimation of beta
is given by the eps
parameter.
Value
A list of 3 elements:
-
mu
the mean vector. -
Sigma
: symmetric positive-definite matrix. The dispersion matrix. -
beta
non-negative numeric value. The shape parameter.
with two attributes attr(, "epsilon")
(precision of the result) and attr(, "k")
(number of iterations).
Author(s)
Pierre Santagostini, Nizar Bouhlel
References
F. Pascal, L. Bombrun, J.Y. Tourneret, Y. Berthoumieu. Parameter Estimation For Multivariate Generalized Gaussian Distribution. IEEE Trans. Signal Processing, vol. 61 no. 23, p. 5960-5971, Dec. 2013. doi: 10.1109/TSP.2013.2282909
See Also
dmggd
: probability density of a MGGD.
rmggd
: random generation from a MGGD.
Examples
mu <- c(0, 1, 4)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
beta <- 0.74
x <- rmggd(100, mu, Sigma, beta)
# Estimation of the parameters
estparmggd(x)