| dmggd {mggd} | R Documentation |
Density of a Multivariate Generalized Gaussian Distribution
Description
Density of the multivariate (p variables) generalized Gaussian distribution (MGGD)
with mean vector mu, dispersion matrix Sigma and shape parameter beta.
Usage
dmggd(x, mu, Sigma, beta, tol = 1e-6)
Arguments
x |
length |
mu |
length |
Sigma |
symmetric, positive-definite square matrix of order |
beta |
positive real number. The shape of the distribution. |
tol |
tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma. |
Details
The density function of a multivariate generalized Gaussian distribution is given by:
\displaystyle{ f(\mathbf{x}|\boldsymbol{\mu}, \Sigma, \beta) = \frac{\Gamma\left(\frac{p}{2}\right)}{\pi^\frac{p}{2} \Gamma\left(\frac{p}{2 \beta}\right) 2^\frac{p}{2\beta}} \frac{\beta}{|\Sigma|^\frac{1}{2}} e^{-\frac{1}{2}\left((\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu})\right)^\beta} }
When p=1 (univariate case) it becomes:
\displaystyle{ f(x|\mu, \sigma, \beta) = \frac{\Gamma\left(\frac{1}{2}\right)}{\pi^\frac{1}{2} \Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2\beta}} \frac{\beta}{\sigma^\frac{1}{2}} \ e^{-\frac{1}{2} \left(\frac{(x - \mu)^2}{2 \sigma}\right)^\beta} = \frac{\beta}{\Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2 \beta} \sqrt{\sigma}} \ e^{-\frac{1}{2} \left(\frac{(x - \mu)^2}{\sigma}\right)^\beta} }
Value
The value of the density.
Author(s)
Pierre Santagostini, Nizar Bouhlel
References
E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. doi:10.1080/03610929808832115
See Also
rmggd: random generation from a MGGD.
estparmggd: estimation of the parameters of a MGGD.
plotmggd, contourmggd: plot of the probability density of a bivariate generalised Gaussian distribution.
Examples
mu <- c(0, 1, 4)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
beta <- 0.74
dmggd(c(0, 1, 4), mu, Sigma, beta)
dmggd(c(1, 2, 3), mu, Sigma, beta)