dmggd {mggd} | R Documentation |
Density of a Multivariate Generalized Gaussian Distribution
Description
Density of the multivariate (p
variables) generalized Gaussian distribution (MGGD)
with mean vector mu
, dispersion matrix Sigma
and shape parameter beta
.
Usage
dmggd(x, mu, Sigma, beta, tol = 1e-6)
Arguments
x |
length |
mu |
length |
Sigma |
symmetric, positive-definite square matrix of order |
beta |
positive real number. The shape of the distribution. |
tol |
tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma. |
Details
The density function of a multivariate generalized Gaussian distribution is given by:
\displaystyle{ f(\mathbf{x}|\boldsymbol{\mu}, \Sigma, \beta) = \frac{\Gamma\left(\frac{p}{2}\right)}{\pi^\frac{p}{2} \Gamma\left(\frac{p}{2 \beta}\right) 2^\frac{p}{2\beta}} \frac{\beta}{|\Sigma|^\frac{1}{2}} e^{-\frac{1}{2}\left((\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu})\right)^\beta} }
When p=1
(univariate case) it becomes:
\displaystyle{ f(x|\mu, \sigma, \beta) = \frac{\Gamma\left(\frac{1}{2}\right)}{\pi^\frac{1}{2} \Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2\beta}} \frac{\beta}{\sigma^\frac{1}{2}} \ e^{-\frac{1}{2} \left(\frac{(x - \mu)^2}{2 \sigma}\right)^\beta} = \frac{\beta}{\Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2 \beta} \sqrt{\sigma}} \ e^{-\frac{1}{2} \left(\frac{(x - \mu)^2}{\sigma}\right)^\beta} }
Value
The value of the density.
Author(s)
Pierre Santagostini, Nizar Bouhlel
References
E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. doi:10.1080/03610929808832115
See Also
rmggd
: random generation from a MGGD.
estparmggd
: estimation of the parameters of a MGGD.
plotmggd
, contourmggd
: plot of the probability density of a bivariate generalised Gaussian distribution.
Examples
mu <- c(0, 1, 4)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
beta <- 0.74
dmggd(c(0, 1, 4), mu, Sigma, beta)
dmggd(c(1, 2, 3), mu, Sigma, beta)