| mgc.sims.joint {mgc} | R Documentation | 
Joint Normal Simulation
Description
A function for Generating a joint-normal simulation.
Usage
mgc.sims.joint(n, d, eps = 0.5)
Arguments
n | 
 the number of samples for the simulation.  | 
d | 
 the number of dimensions for the simulation setting.  | 
eps | 
 the noise level for the simulation. Defaults to   | 
Value
a list containing the following:
X | 
 
  | 
Y | 
 
  | 
Details
Given: \rho = \frac{1}{2}d, I_d is the identity matrix of size d \times d, J_d is the matrix of ones of size d \times d.
Simulates n points from Joint-Normal(X, Y) \in  \mathbf{R}^d \times \mathbf{R}^d, where:
(X, Y) \sim {N}(0, \Sigma)
,
\Sigma = \left[I_d, \rho J_d; \rho J_d , (1 + \epsilon\kappa)I_d\right]
and \kappa = 1\textrm{ if }d = 1, \textrm{ and 0 otherwise} controls the noise for higher dimensions.
For more details see the help vignette:
vignette("sims", package = "mgc")
Author(s)
Eric Bridgeford
Examples
library(mgc)
result  <- mgc.sims.joint(n=100, d=10)  # simulate 100 samples in 10 dimensions
X <- result$X; Y <- result$Y