mgc.sims.joint {mgc}R Documentation

Joint Normal Simulation

Description

A function for Generating a joint-normal simulation.

Usage

mgc.sims.joint(n, d, eps = 0.5)

Arguments

n

the number of samples for the simulation.

d

the number of dimensions for the simulation setting.

eps

the noise level for the simulation. Defaults to 0.5.

Value

a list containing the following:

X

[n, d] the data matrix with n samples in d dimensions.

Y

[n] the response array.

Details

Given: \rho = \frac{1}{2}d, I_d is the identity matrix of size d \times d, J_d is the matrix of ones of size d \times d. Simulates n points from Joint-Normal(X, Y) \in \mathbf{R}^d \times \mathbf{R}^d, where:

(X, Y) \sim {N}(0, \Sigma)

,

\Sigma = \left[I_d, \rho J_d; \rho J_d , (1 + \epsilon\kappa)I_d\right]

and \kappa = 1\textrm{ if }d = 1, \textrm{ and 0 otherwise} controls the noise for higher dimensions.

For more details see the help vignette: vignette("sims", package = "mgc")

Author(s)

Eric Bridgeford

Examples

library(mgc)
result  <- mgc.sims.joint(n=100, d=10)  # simulate 100 samples in 10 dimensions
X <- result$X; Y <- result$Y

[Package mgc version 2.0.2 Index]