mgc.sims.joint {mgc} | R Documentation |
Joint Normal Simulation
Description
A function for Generating a joint-normal simulation.
Usage
mgc.sims.joint(n, d, eps = 0.5)
Arguments
n |
the number of samples for the simulation. |
d |
the number of dimensions for the simulation setting. |
eps |
the noise level for the simulation. Defaults to |
Value
a list containing the following:
X |
|
Y |
|
Details
Given: \rho = \frac{1}{2}d
, I_d
is the identity matrix of size d \times d
, J_d
is the matrix of ones of size d \times d
.
Simulates n
points from Joint-Normal(X, Y) \in \mathbf{R}^d \times \mathbf{R}^d
, where:
(X, Y) \sim {N}(0, \Sigma)
,
\Sigma = \left[I_d, \rho J_d; \rho J_d , (1 + \epsilon\kappa)I_d\right]
and \kappa = 1\textrm{ if }d = 1, \textrm{ and 0 otherwise}
controls the noise for higher dimensions.
For more details see the help vignette:
vignette("sims", package = "mgc")
Author(s)
Eric Bridgeford
Examples
library(mgc)
result <- mgc.sims.joint(n=100, d=10) # simulate 100 samples in 10 dimensions
X <- result$X; Y <- result$Y