mgc.sims.joint {mgc}R Documentation

Joint Normal Simulation

Description

A function for Generating a joint-normal simulation.

Usage

mgc.sims.joint(n, d, eps = 0.5)

Arguments

n

the number of samples for the simulation.

d

the number of dimensions for the simulation setting.

eps

the noise level for the simulation. Defaults to 0.5.

Value

a list containing the following:

X

[n, d] the data matrix with n samples in d dimensions.

Y

[n] the response array.

Details

Given: ρ=12d\rho = \frac{1}{2}d, IdI_d is the identity matrix of size d×dd \times d, JdJ_d is the matrix of ones of size d×dd \times d. Simulates nn points from JointNormal(X,Y)Rd×RdJoint-Normal(X, Y) \in \mathbf{R}^d \times \mathbf{R}^d, where:

(X,Y)N(0,Σ)(X, Y) \sim {N}(0, \Sigma)

,

Σ=[Id,ρJd;ρJd,(1+ϵκ)Id]\Sigma = \left[I_d, \rho J_d; \rho J_d , (1 + \epsilon\kappa)I_d\right]

and κ=1 if d=1, and 0 otherwise\kappa = 1\textrm{ if }d = 1, \textrm{ and 0 otherwise} controls the noise for higher dimensions.

For more details see the help vignette: vignette("sims", package = "mgc")

Author(s)

Eric Bridgeford

Examples

library(mgc)
result  <- mgc.sims.joint(n=100, d=10)  # simulate 100 samples in 10 dimensions
X <- result$X; Y <- result$Y

[Package mgc version 2.0.2 Index]