mgc.sims.cubic {mgc} | R Documentation |
Cubic Simulation
Description
A function for Generating a cubic simulation.
Usage
mgc.sims.cubic(
n,
d,
eps = 80,
ind = FALSE,
a = -1,
b = 1,
c.coef = c(-12, 48, 128),
s = 1/3
)
Arguments
n |
the number of samples for the simulation. |
d |
the number of dimensions for the simulation setting. |
eps |
the noise level for the simulation. Defaults to |
ind |
whether to sample x and y independently. Defaults to |
a |
the lower limit for the range of the data matrix. Defaults to |
b |
the upper limit for the range of the data matrix. Defaults to |
c.coef |
the coefficients for the cubic function, where the first value is the first order coefficient, the second value the quadratic coefficient, and the third the cubic coefficient. Defaults to |
s |
the scaling for the center of the cubic. Defaults to |
Value
a list containing the following:
X |
|
Y |
|
Details
Given: w_i = \frac{1}{i}
is a weight-vector that scales with the dimensionality.
Simulates n
points from Linear(X, Y) \in \mathbf{R}^d \times \mathbf{R}
, where:
X \sim {U}(a, b)^d
Y = c_3\left(w^TX - s\right)^3 + c_2\left(w^TX - s\right)^2 + c_1\left(w^TX - s\right) + \kappa \epsilon
and \kappa = 1\textrm{ if }d = 1, \textrm{ and 0 otherwise}
controls the noise for higher dimensions.
Author(s)
Eric Bridgeford
Examples
library(mgc)
result <- mgc.sims.cubic(n=100, d=10) # simulate 100 samples in 10 dimensions
X <- result$X; Y <- result$Y