betaor {mfx} | R Documentation |
Odds ratios for a beta regression.
Description
This function estimates a beta regression model and calculates the corresponding odds ratios.
Usage
betaor(formula, data, robust = FALSE, clustervar1 = NULL, clustervar2 = NULL,
control = betareg.control(), link.phi = NULL, type = "ML")
Arguments
formula |
an object of class “formula” (or one that can be coerced to that class). |
data |
the data frame containing these data. This argument must be used. |
robust |
if |
clustervar1 |
a character value naming the first cluster on which to adjust the standard errors. |
clustervar2 |
a character value naming the second cluster on which to adjust the standard errors for two-way clustering. |
control |
a list of control arguments specified via |
link.phi |
as in the |
type |
as in the |
Details
The underlying link function in the mean model (mu) is "logit". If both robust=TRUE
and
!is.null(clustervar1)
the function overrides the robust
command and computes clustered
standard errors.
Value
oddsratio |
a coefficient matrix with columns containing the estimates, associated standard errors, test statistics and p-values. |
fit |
the fitted |
call |
the matched call. |
References
Francisco Cribari-Neto, Achim Zeileis (2010). Beta Regression in R. Journal of Statistical Software 34(2), 1-24.
Bettina Gruen, Ioannis Kosmidis, Achim Zeileis (2012). Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned. Journal of Statistical Software, 48(11), 1-25.
See Also
Examples
# simulate some data
set.seed(12345)
n = 1000
x = rnorm(n)
# beta outcome
y = rbeta(n, shape1 = plogis(1 + 0.5 * x), shape2 = (abs(0.2*x)))
# use Smithson and Verkuilen correction
y = (y*(n-1)+0.5)/n
data = data.frame(y,x)
betaor(y~x|x, data=data)