fit_mfgarch {mfGARCH} | R Documentation |
This function estimates a multiplicative mixed-frequency GARCH model. For the sake of numerical stability, it is best to multiply log returns by 100.
Description
This function estimates a multiplicative mixed-frequency GARCH model. For the sake of numerical stability, it is best to multiply log returns by 100.
Usage
fit_mfgarch(
data,
y,
x = NULL,
K = NULL,
low.freq = "date",
var.ratio.freq = NULL,
gamma = TRUE,
weighting = "beta.restricted",
x.two = NULL,
K.two = NULL,
low.freq.two = NULL,
weighting.two = NULL,
multi.start = FALSE,
control = list(par.start = NULL)
)
Arguments
data |
data frame containing a column named date of type 'Date'. |
y |
name of high frequency dependent variable in df. |
x |
covariate employed in mfGARCH. |
K |
an integer specifying lag length K in the long-term component. |
low.freq |
a string of the low frequency variable in the df. |
var.ratio.freq |
specify a frequency column on which the variance ratio should be calculated. |
gamma |
if TRUE, an asymmetric GJR-GARCH is used as the short-term component. If FALSE, a simple GARCH(1,1) is employed. |
weighting |
specifies the weighting scheme employed in the long-term component. Options are "beta.restricted" (default) or "beta.unrestricted" |
x.two |
optional second covariate |
K.two |
lag lgenth of optional second covariate |
low.freq.two |
low frequency of optional second covariate |
weighting.two |
specifies the weighting scheme employed in the optional second long-term component. Currently, the only option is "beta.restricted" |
multi.start |
if TRUE, optimization is carried out with multiple starting values |
control |
a list |
Value
A list of class mfGARCH with letters and numbers.
par - vector of estimated parameters
rob.std.err - sandwich/HAC-type standard errors
broom.mgarch - a broom-like data.frame with entries 1) estimate: column of estimated parameters 2) rob.std.err - sandwich/HAC-type standard errors 3) p.value - p-values derived from sandwich/HAC-type standard errors 4) opg.std.err - Bollerslev-Wooldrige/OPG standard errors for GARCH processes 5) opg.p.value - corresponding alternative p-values
tau - fitted long-term component
g - fitted short-term component
df.fitted - data frame with fitted values and residuals
K - chosen lag-length in the long-term component
weighting.scheme - chosen weighting scheme
llh - log-likelihood value at estimated parameter vector
bic - corresponding BIC value
y - dependent variable y
optim - output of the optimization routine
K.two - lag-lenth of x.two if two covariates are employed
weighting.scheme.two - chosen weighting scheme of x.two (if K.two != NULL)
tau.forecast - one-step ahead forecast of the long-term component
variance.ratio - calculated variance ratio
est.weighting - estimated weighting scheme
est.weighting.two - estimated weighting scheme of x.two (if K.two != NULL)
Examples
## Not run:
fit_mfgarch(data = df_financial, y = "return", x = "nfci", low.freq = "week", K = 52)
fit_mfgarch(data = df_mfgarch, y = "return", x = "nfci", low.freq = "year_week", K = 52,
x.two = "dindpro", K.two = 12, low.freq.two = "year_month", weighting.two = "beta.restricted")
## End(Not run)