rmev {mev} | R Documentation |
Exact simulations of multivariate extreme value distributions
Description
Implementation of the random number generators for multivariate extreme-value distributions and max-stable processes based on the two algorithms described in Dombry, Engelke and Oesting (2016).
Usage
rmev(
n,
d,
param,
asy,
sigma,
model = c("log", "alog", "neglog", "aneglog", "bilog", "negbilog", "hr", "br", "xstud",
"smith", "schlather", "ct", "sdir", "dirmix", "pairbeta", "pairexp", "wdirbs",
"wexpbs", "maxlin"),
alg = c("ef", "sm"),
weights = NULL,
vario = NULL,
coord = NULL,
grid = FALSE,
dist = NULL,
...
)
Arguments
n |
number of observations |
d |
dimension of sample |
param |
parameter vector for the logistic, bilogistic, negative bilogistic and extremal Dirichlet (Coles and Tawn) model. Parameter matrix for the Dirichlet mixture. Degree of freedoms for extremal student model. See Details. |
asy |
list of asymmetry parameters, as in function |
sigma |
covariance matrix for Brown-Resnick and extremal Student-t distributions. Symmetric matrix of squared coefficients |
model |
for multivariate extreme value distributions, users can choose between 1-parameter logistic and negative logistic, asymmetric logistic and negative logistic, bilogistic, Husler-Reiss, extremal Dirichlet model (Coles and Tawn) or the Dirichlet mixture. Spatial models include the Brown-Resnick, Smith, Schlather and extremal Student max-stable processes. Max linear models are also supported |
alg |
algorithm, either simulation via extremal function ( |
weights |
vector of length |
vario |
semivariogram function whose first argument must be distance. Used only if provided in conjunction with |
coord |
|
grid |
Logical. |
dist |
symmetric matrix of pairwise distances. Default to |
... |
additional arguments for the |
Details
The vector param differs depending on the model
-
log
: one dimensional parameter greater than 1 -
alog
:2^d-d-1
dimensional parameter fordep
. Values are recycled if needed. -
neglog
: one dimensional positive parameter -
aneglog
:2^d-d-1
dimensional parameter fordep
. Values are recycled if needed. -
bilog
:d
-dimensional vector of parameters in[0,1]
-
negbilog
:d
-dimensional vector of negative parameters -
ct, dir, negdir, sdir
:d
-dimensional vector of positive (a)symmetry parameters. Fordir
andnegdir
, ad+1
vector consisting of thed
Dirichlet parameters and the last entry is an index of regular variation in(-\min(\alpha_1, \ldots, \alpha_d), 1]
treated as shape parameter -
xstud
: one dimensional parameter corresponding to degrees of freedomalpha
-
dirmix
:d
bym
-dimensional matrix of positive (a)symmetry parameters -
pairbeta, pairexp
:d(d-1)/2+1
vector of parameters, containing the concentration parameter and the coefficients of the pairwise beta, in lexicographical order e.g.,\beta_{12}, \beta_{13}, \ldots
-
wdirbs, wexpbs
:2d
vector ofd
concentration parameters followed by thed
Dirichlet parameters
Stephenson points out that the multivariate asymmetric negative logistic model given in e.g. Coles and Tawn (1991) is not a valid distribution function in dimension d>3
unless additional constraints are imposed on the parameter values.
The implementation in mev
uses the same construction as the asymmetric logistic distribution (see the vignette). As such it does not match the bivariate implementation of rbvevd.
The dependence parameter of the evd
package for the Husler-Reiss distribution can be recovered taking
for the Brown–Resnick model 2/r=\sqrt(2\gamma(h))
where h
is the lag vector between sites and r=1/\lambda
for the Husler–Reiss.
Value
an n
by d
exact sample from the corresponding multivariate extreme value model
Warning
As of version 1.8 (August 16, 2016), there is a distinction between models hr
and br
. The latter is meant to be used in conjunction with variograms. The parametrization differs between the two models.
The family of scaled Dirichlet is now parametrized by a parameter in -\min(\alpha)
appended to the the d
vector param
containing the parameter alpha
of the Dirichlet model. Arguments model='dir'
and model='negdir'
are still supported internally, but not listed in the options.
Author(s)
Leo Belzile
References
Dombry, Engelke and Oesting (2016). Exact simulation of max-stable processes, Biometrika, 103(2), 303–317.
See Also
Examples
set.seed(1)
rmev(n=100, d=3, param=2.5, model='log', alg='ef')
rmev(n=100, d=4, param=c(0.2,0.1,0.9,0.5), model='bilog', alg='sm')
## Spatial example using power variogram
#NEW: Semi-variogram must take distance as argument
semivario <- function(x, scale, alpha){ scale*x^alpha }
#grid specification
grid.coord <- as.matrix(expand.grid(runif(4), runif(4)))
rmev(n=100, vario=semivario, coord=grid.coord, model='br', scale = 0.5, alpha = 1)
#using the Brown-Resnick model with a covariance matrix
vario2cov <- function(coord, semivario,...){
sapply(1:nrow(coord), function(i) sapply(1:nrow(coord), function(j)
semivario(sqrt(sum((coord[i,])^2)), ...) +
semivario(sqrt(sum((coord[j,])^2)), ...) -
semivario(sqrt(sum((coord[i,]-coord[j,])^2)), ...)))
}
rmev(n=100, sigma=vario2cov(grid.coord, semivario = semivario, scale = 0.5, alpha = 1), model='br')
# asymmetric logistic model - see function 'rmvevd' from package 'evd '
asy <- list(0, 0, 0, 0, c(0,0), c(0,0), c(0,0), c(0,0), c(0,0), c(0,0),
c(.2,.1,.2), c(.1,.1,.2), c(.3,.4,.1), c(.2,.2,.2), c(.4,.6,.2,.5))
rmev(n=1, d=4, param=0.3, asy=asy, model="alog")
#Example with a grid (generating an array)
rmev(n=10, sigma=cbind(c(2,1), c(1,3)), coord=cbind(runif(4), runif(4)), model='smith', grid=TRUE)
## Example with Dirichlet mixture
alpha.mat <- cbind(c(2,1,1),c(1,2,1),c(1,1,2))
rmev(n=100, param=alpha.mat, weights=rep(1/3,3), model='dirmix')
rmev(n=10, param=c(0.1,1,2,3), d=3, model='pairbeta')