gpde {mev} | R Documentation |
Generalized Pareto distribution (expected shortfall parametrization)
Description
Likelihood, score function and information matrix, approximate ancillary statistics and sample space derivative for the generalized Pareto distribution parametrized in terms of expected shortfall.
The parameter m
corresponds to \zeta_u
/(1-\alpha
), where \zeta_u
is the rate of exceedance over the threshold
u
and \alpha
is the percentile of the expected shortfall.
Note that the actual parametrization is in terms of excess expected shortfall, meaning expected shortfall minus threshold.
Arguments
par |
vector of length 2 containing |
dat |
sample vector |
m |
number of observations of interest for return levels. See Details |
tol |
numerical tolerance for the exponential model |
method |
string indicating whether to use the expected ( |
nobs |
number of observations |
V |
vector calculated by |
Details
The observed information matrix was calculated from the Hessian using symbolic calculus in Sage.
Usage
gpde.ll(par, dat, m, tol=1e-5) gpde.ll.optim(par, dat, m, tol=1e-5) gpde.score(par, dat, m) gpde.infomat(par, dat, m, method = c('obs', 'exp'), nobs = length(dat)) gpde.Vfun(par, dat, m) gpde.phi(par, dat, V, m) gpde.dphi(par, dat, V, m)
Functions
-
gpde.ll
: log likelihood -
gpde.ll.optim
: negative log likelihood parametrized in terms of log expected shortfall and shape in order to perform unconstrained optimization -
gpde.score
: score vector -
gpde.infomat
: observed information matrix for GPD parametrized in terms of rate of expected shortfall and shape -
gpde.Vfun
: vector implementing conditioning on approximate ancillary statistics for the TEM -
gpde.phi
: canonical parameter in the local exponential family approximation -
gpde.dphi
: derivative matrix of the canonical parameter in the local exponential family approximation
Author(s)
Leo Belzile