gpd {mev} | R Documentation |
Generalized Pareto distribution
Description
Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized Pareto distribution
Arguments
par |
vector of |
dat |
sample vector |
tol |
numerical tolerance for the exponential model |
method |
string indicating whether to use the expected ( |
V |
vector calculated by |
n |
sample size |
Usage
gpd.ll(par, dat, tol=1e-5) gpd.ll.optim(par, dat, tol=1e-5) gpd.score(par, dat) gpd.infomat(par, dat, method = c('obs','exp')) gpd.bias(par, n) gpd.Fscore(par, dat, method = c('obs','exp')) gpd.Vfun(par, dat) gpd.phi(par, dat, V) gpd.dphi(par, dat, V)
Functions
-
gpd.ll
: log likelihood -
gpd.ll.optim
: negative log likelihood parametrized in terms oflog(scale)
and shape in order to perform unconstrained optimization -
gpd.score
: score vector -
gpd.infomat
: observed or expected information matrix -
gpd.bias
: Cox-Snell first order bias -
gpd.Fscore
: Firth's modified score equation -
gpd.Vfun
: vector implementing conditioning on approximate ancillary statistics for the TEM -
gpd.phi
: canonical parameter in the local exponential family approximation -
gpd.dphi
: derivative matrix of the canonical parameter in the local exponential family approximation
Author(s)
Leo Belzile
References
Firth, D. (1993). Bias reduction of maximum likelihood estimates, Biometrika, 80(1), 27–38.
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer, 209 p.
Cox, D. R. and E. J. Snell (1968). A general definition of residuals, Journal of the Royal Statistical Society: Series B (Methodological), 30, 248–275.
Cordeiro, G. M. and R. Klein (1994). Bias correction in ARMA models, Statistics and Probability Letters, 19(3), 169–176.
Giles, D. E., Feng, H. and R. T. Godwin (2016). Bias-corrected maximum likelihood estimation of the parameters of the generalized Pareto distribution, Communications in Statistics - Theory and Methods, 45(8), 2465–2483.