fit.gev {mev} | R Documentation |
Maximum likelihood estimation for the generalized extreme value distribution
Description
This function returns an object of class mev_gev
, with default methods for printing and quantile-quantile plots.
The default starting values are the solution of the probability weighted moments.
Usage
fit.gev(
xdat,
start = NULL,
method = c("nlminb", "BFGS"),
show = FALSE,
fpar = NULL,
warnSE = FALSE
)
Arguments
xdat |
a numeric vector of data to be fitted. |
start |
named list of starting values |
method |
string indicating the outer optimization routine for the augmented Lagrangian. One of |
show |
logical; if |
fpar |
a named list with optional fixed components |
warnSE |
logical; if |
Value
a list containing the following components:
-
estimate
a vector containing the maximum likelihood estimates. -
std.err
a vector containing the standard errors. -
vcov
the variance covariance matrix, obtained as the numerical inverse of the observed information matrix. -
method
the method used to fit the parameter. -
nllh
the negative log-likelihood evaluated at the parameterestimate
. -
convergence
components taken from the list returned byauglag
. Values other than0
indicate that the algorithm likely did not converge. -
counts
components taken from the list returned byauglag
. -
xdat
vector of data
Examples
xdat <- mev::rgev(n = 100)
fit.gev(xdat, show = TRUE)
# Example with fixed parameter
fit.gev(xdat, show = TRUE, fpar = list(shape = 0))