| fit.gev {mev} | R Documentation |
Maximum likelihood estimation for the generalized extreme value distribution
Description
This function returns an object of class mev_gev, with default methods for printing and quantile-quantile plots.
The default starting values are the solution of the probability weighted moments.
Usage
fit.gev(
xdat,
start = NULL,
method = c("nlminb", "BFGS"),
show = FALSE,
fpar = NULL,
warnSE = FALSE
)
Arguments
xdat |
a numeric vector of data to be fitted. |
start |
named list of starting values |
method |
string indicating the outer optimization routine for the augmented Lagrangian. One of |
show |
logical; if |
fpar |
a named list with optional fixed components |
warnSE |
logical; if |
Value
a list containing the following components:
-
estimatea vector containing the maximum likelihood estimates. -
std.erra vector containing the standard errors. -
vcovthe variance covariance matrix, obtained as the numerical inverse of the observed information matrix. -
methodthe method used to fit the parameter. -
nllhthe negative log-likelihood evaluated at the parameterestimate. -
convergencecomponents taken from the list returned byauglag. Values other than0indicate that the algorithm likely did not converge. -
countscomponents taken from the list returned byauglag. -
xdatvector of data
Examples
xdat <- mev::rgev(n = 100)
fit.gev(xdat, show = TRUE)
# Example with fixed parameter
fit.gev(xdat, show = TRUE, fpar = list(shape = 0))