fit.extgp {mev} | R Documentation |
Fit an extended generalized Pareto distribution of Naveau et al.
Description
This is a wrapper function to obtain PWM or MLE estimates for the extended GP models of Naveau et al. (2016) for rainfall intensities. The function calculates confidence intervals by means of nonparametric percentile bootstrap and returns histograms and QQ plots of the fitted distributions. The function handles both censoring and rounding.
Usage
fit.extgp(
data,
model = 1,
method = c("mle", "pwm"),
init,
censoring = c(0, Inf),
rounded = 0,
confint = FALSE,
R = 1000,
ncpus = 1,
plots = TRUE
)
Arguments
data |
data vector. |
model |
integer ranging from 0 to 4 indicating the model to select (see |
method |
string; either |
init |
vector of initial values, comprising of |
censoring |
numeric vector of length 2 containing the lower and upper bound for censoring; |
rounded |
numeric giving the instrumental precision (and rounding of the data), with default of 0. |
confint |
logical; should confidence interval be returned (percentile bootstrap). |
R |
integer; number of bootstrap replications. |
ncpus |
integer; number of CPUs for parallel calculations (default: 1). |
plots |
logical; whether to produce histogram and density plots. |
Details
The different models include the following transformations:
-
model
0 corresponds to uniform carrier,G(u)=u
. -
model
1 corresponds to a three parameters family, with carrierG(u)=u^\kappa
. -
model
2 corresponds to a three parameters family, with carrierG(u)=1-V_\delta((1-u)^\delta)
. -
model
3 corresponds to a four parameters family, with carrierG(u)=1-V_\delta((1-u)^\delta))^{\kappa/2}
.
-
model
4 corresponds to a five parameter model (a mixture oftype
2, withG(u)=pu^\kappa + (1-p)*u^\delta
Author(s)
Raphael Huser and Philippe Naveau
References
Naveau, P., R. Huser, P. Ribereau, and A. Hannart (2016), Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection, Water Resour. Res., 52, 2753-2769, doi:10.1002/2015WR018552
.
See Also
Examples
## Not run:
data(rain, package = "ismev")
fit.extgp(rain[rain>0], model=1, method = 'mle', init = c(0.9, gp.fit(rain, 0)$est),
rounded = 0.1, confint = TRUE, R = 20)
## End(Not run)