| emplik {mev} | R Documentation | 
Self-concordant empirical likelihood for a vector mean
Description
Self-concordant empirical likelihood for a vector mean
Usage
emplik(
  dat,
  mu = rep(0, ncol(dat)),
  lam = rep(0, ncol(dat)),
  eps = 1/nrow(dat),
  M = 1e+30,
  thresh = 1e-30,
  itermax = 100
)
Arguments
dat | 
 
  | 
mu | 
 
  | 
lam | 
 starting values for Lagrange multiplier vector, default to zero vector  | 
eps | 
 lower cutoff for   | 
M | 
 upper cutoff for   | 
thresh | 
 convergence threshold for log likelihood (default of   | 
itermax | 
 upper bound on number of Newton steps.  | 
Value
a list with components
-  
logelrlog empirical likelihood ratio. -  
lamLagrange multiplier (vector of lengthd). -  
wtsnvector of observation weights (probabilities). -  
convboolean indicating convergence. -  
niternumber of iteration until convergence. -  
ndecNewton decrement. -  
gradnormnorm of gradient of log empirical likelihood. 
Author(s)
Art Owen, C++ port by Leo Belzile
References
Owen, A.B. (2013). Self-concordance for empirical likelihood, Canadian Journal of Statistics, 41(3), 387–397.