emTMoE {meteorits} | R Documentation |
emTMoE implements the ECM algorithm to fit a t Mixture of Experts (TMoE).
Description
emTMoE implements the maximum-likelihood parameter estimation of a Student Mixture of Experts (TMoE) model by the Conditional Expectation Maximization (ECM) algorithm.
Usage
emTMoE(X, Y, K, p = 3, q = 1, n_tries = 1, max_iter = 1500,
threshold = 1e-06, verbose = FALSE, verbose_IRLS = FALSE)
Arguments
X |
Numeric vector of length n representing the covariates/inputs
|
Y |
Numeric vector of length n representing the observed
response/output |
K |
The number of experts. |
p |
Optional. The order of the polynomial regression for the experts. |
q |
Optional. The order of the logistic regression for the gating network. |
n_tries |
Optional. Number of runs of the ECM algorithm. The solution providing the highest log-likelihood will be returned. |
max_iter |
Optional. The maximum number of iterations for the ECM algorithm. |
threshold |
Optional. A numeric value specifying the threshold for the relative difference of log-likelihood between two steps of the ECM as stopping criteria. |
verbose |
Optional. A logical value indicating whether or not values of the log-likelihood should be printed during ECM iterations. |
verbose_IRLS |
Optional. A logical value indicating whether or not values of the criterion optimized by IRLS should be printed at each step of the ECM algorithm. |
Details
emTMoE function implements the ECM algorithm for the TMoE model. This
function starts with an initialization of the parameters done by the method
initParam
of the class ParamTMoE, then it alternates between
the E-Step (method of the class StatTMoE) and the M-Step
(method of the class ParamTMoE) until convergence (until the
relative variation of log-likelihood between two steps of the ECM algorithm
is less than the threshold
parameter).
Value
ECM returns an object of class ModelTMoE.
See Also
ModelTMoE, ParamTMoE, StatTMoE
Examples
data(tempanomalies)
x <- tempanomalies$Year
y <- tempanomalies$AnnualAnomaly
tmoe <- emTMoE(X = x, Y = y, K = 2, p = 1, verbose = TRUE)
tmoe$summary()
tmoe$plot()