| StatTMoE-class {meteorits} | R Documentation |
A Reference Class which contains statistics of a TMoE model.
Description
StatTMoE contains all the statistics associated to a TMoE model. It mainly includes the E-Step of the ECM algorithm calculating the posterior distribution of the hidden variables, as well as the calculation of the log-likelhood.
Fields
piikMatrix of size
(n, K)representing the probabilities\pi_{k}(x_{i}; \boldsymbol{\Psi}) = P(z_{i} = k | \boldsymbol{x}; \Psi)of the latent variablez_{i}, i = 1,\dots,n.z_ikHard segmentation logical matrix of dimension
(n, K)obtained by the Maximum a posteriori (MAP) rule:z\_ik = 1 \ \textrm{if} \ z\_ik = \textrm{arg} \ \textrm{max}_{s} \ \tau_{is};\ 0 \ \textrm{otherwise},k = 1,\dots,K.klasColumn matrix of the labels issued from
z_ik. Its elements areklas(i) = k,k = 1,\dots,K.tikMatrix of size
(n, K)giving the posterior probability\tau_{ik}that the observationy_{i}originates from thek-th expert.Ey_kMatrix of dimension (n, K) giving the estimated means of the experts.
EyColumn matrix of dimension n giving the estimated mean of the TMoE.
Var_ykColumn matrix of dimension K giving the estimated means of the experts.
VaryColumn matrix of dimension n giving the estimated variance of the response.
loglikNumeric. Observed-data log-likelihood of the TMoE model.
com_loglikNumeric. Complete-data log-likelihood of the TMoE model.
stored_loglikNumeric vector. Stored values of the log-likelihood at each ECM iteration.
BICNumeric. Value of BIC (Bayesian Information Criterion).
ICLNumeric. Value of ICL (Integrated Completed Likelihood).
AICNumeric. Value of AIC (Akaike Information Criterion).
log_piik_fikMatrix of size
(n, K)giving the values of the logarithm of the joint probabilityP(y_{i}, \ z_{i} = k | \boldsymbol{x}, \boldsymbol{\Psi}),i = 1,\dots,n.log_sum_piik_fikColumn matrix of size m giving the values of
\textrm{log} \sum_{k = 1}^{K} P(y_{i}, \ z_{i} = k | \boldsymbol{x}, \boldsymbol{\Psi}),i = 1,\dots,n.WikConditional expectations
w_{ik}.
Methods
computeLikelihood(reg_irls)Method to compute the log-likelihood.
reg_irlsis the value of the regularization part in the IRLS algorithm.computeStats(paramTMoE)Method used in the ECM algorithm to compute statistics based on parameters provided by the object
paramTMoEof class ParamTMoE.EStep(paramTMoE)Method used in the ECM algorithm to update statistics based on parameters provided by the object
paramTMoEof class ParamTMoE (prior and posterior probabilities).MAP()MAP calculates values of the fields
z_ikandklasby applying the Maximum A Posteriori Bayes allocation rule.z_{ik} = 1 \ \textrm{if} \ k = \textrm{arg} \ \textrm{max}_{s} \ \tau_{is};\ 0 \ \textrm{otherwise}