acc.metric.fun {meteo} | R Documentation |
Accuracy metrics calculation
Description
Calculates classification and regression accuracy metrics for given coresponding observation and prediction vectors.
Usage
acc.metric.fun(obs, pred, acc.m)
Arguments
obs |
|
pred |
|
acc.m |
|
Value
Accuracy metric value.
Author(s)
Aleksandar Sekulic asekulic@grf.bg.ac.rs
References
Sekulić, A., Kilibarda, M., Heuvelink, G. B., Nikolić, M. & Bajat, B. Random Forest Spatial Interpolation.Remote. Sens. 12, 1687, https://doi.org/10.3390/rs12101687 (2020).
See Also
acc.metric.fun
rfsi
pred.rfsi
tune.rfsi
cv.rfsi
pred.strk
cv.strk
Examples
library(sp)
library(sf)
library(CAST)
library(ranger)
library(plyr)
library(meteo)
# preparing data
demo(meuse, echo=FALSE)
meuse <- meuse[complete.cases(meuse@data),]
data = st_as_sf(meuse, coords = c("x", "y"), crs = 28992, agr = "constant")
fm.RFSI <- as.formula("zinc ~ dist + soil + ffreq")
# making tgrid
n.obs <- 1:3
min.node.size <- 2:10
sample.fraction <- seq(1, 0.632, -0.05) # 0.632 without / 1 with replacement
splitrule <- "variance"
ntree <- 250 # 500
mtry <- 3:(2+2*max(n.obs))
tgrid = expand.grid(min.node.size=min.node.size, num.trees=ntree,
mtry=mtry, n.obs=n.obs, sample.fraction=sample.fraction)
# do cross-validation
rfsi_cv <- cv.rfsi(formula=fm.RFSI, # without nearest obs
data = data,
zero.tol=0,
tgrid = tgrid, # combinations for tuning
tgrid.n = 5, # number of randomly selected combinations from tgrid for tuning
tune.type = "LLO", # Leave-Location-Out CV
k = 5, # number of folds
seed = 42,
acc.metric = "RMSE", # R2, CCC, MAE
output.format = "data.frame",
cpus=2, # detectCores()-1,
progress=1,
importance = "impurity")
summary(rfsi_cv)
# accuracy metric calculation
acc.metric.fun(rfsi_cv$obs, rfsi_cv$pred, "R2")
acc.metric.fun(rfsi_cv$obs, rfsi_cv$pred, "RMSE")
acc.metric.fun(rfsi_cv$obs, rfsi_cv$pred, "NRMSE")
acc.metric.fun(rfsi_cv$obs, rfsi_cv$pred, "MAE")
acc.metric.fun(rfsi_cv$obs, rfsi_cv$pred, "NMAE")
acc.metric.fun(rfsi_cv$obs, rfsi_cv$pred, "CCC")
[Package meteo version 2.0-3 Index]