smd.vcov {metavcov}R Documentation

Computing Variance-Covariance Matrices for Standardized Mean Differences

Description

The function lgOR.vcov computes effect sizes and variance-covariance matrix for multivariate meta-analysis when the effect sizes of interest are all measured by standardized mean difference. See mix.vcov for effect sizes of the same or different types.

Usage

smd.vcov(nt, nc, d, r, n_rt = NA, n_rc = NA, name = NULL)

Arguments

nt

A N×pN \times p matrix storing sample sizes in the treatment group reporting the pp outcomes. nt[i,j] is the sample size from study ii reporting outcome jj.

nc

A matrix defined in a similar way as nt for the control group.

d

A N×pN \times p matrix or data frame with standard mean differences (SMD) from the NN studies. d[i,j] is the value from study ii for outcome jj.

r

A NN-dimensional list of p×pp \times p correlation matrices for the pp outcomes from the NN studies. r[[k]][i,j] is the correlation coefficient between outcome ii and outcome jj from study kk.

n_rt

A NN-dimensional list of p×pp \times p matrices storing sample sizes in the treatment group reporting pairwise outcomes in the off-diagonal elements. n_rt[[k]][i,j] is the sample size reporting both outcome ii and outcome jj from study kk. Diagonal elements of these matrices are discarded. The default value is NA, which means that the smaller sample size reporting the corresponding two outcomes is imputed: i.e. n_rt[[k]][i,j]=min(nt[k,i],nt[k,j]).

n_rc

A list defined in a similar way as n_rt for the control group.

name

Names for the outcomes.

Value

ef

A N×pN \times p data frame that transforms the input argument d into Hedges's g (Wei and Higgins, 2013).

list.vcov

A NN-dimensional list of p(p+1)/2×p(p+1)/2p(p+1)/2 \times p(p+1)/2 variance-covariance matrices for Hedges's g (Wei and Higgins, 2013).

matrix.vcov

A N×p(p+1)/2N \times p(p+1)/2 whose rows are computed variance-covariance vectors for Hedges's g (Wei and Higgins, 2013).

list.dvcov

A NN-dimensional list of p(p+1)/2×p(p+1)/2p(p+1)/2 \times p(p+1)/2 variance-covariance matrices for SMD (Olkin and Gleser, 2009).

matrix.dvcov

A N×p(p+1)/2N \times p(p+1)/2 matrix whose rows are computed variance-covariance vectors for SMD (Olkin and Gleser, 2009).

Author(s)

Min Lu

References

Lu, M. (2023). Computing within-study covariances, data visualization, and missing data solutions for multivariate meta-analysis with metavcov. Frontiers in Psychology, 14:1185012.

Examples

######################################################
# Example: Geeganage2010 data
# Preparing covarianceS for multivariate meta-analysis
######################################################
data(Geeganage2010)
## set the correlation coefficients list r
r12 <- 0.71
r.Gee <- lapply(1:nrow(Geeganage2010), function(i){matrix(c(1, r12, r12, 1), 2, 2)})

computvcov <- smd.vcov(nt = subset(Geeganage2010, select = c(nt_SBP, nt_DBP)),
               nc = subset(Geeganage2010, select = c(nc_SBP, nc_DBP)),
               d = subset(Geeganage2010, select = c(SMD_SBP, SMD_DBP)), r = r.Gee,
               name = c("SMD_SBP", "SMD_DBP"))
# name variance-covariance matrix as S
S <- computvcov$matrix.vcov
## fixed-effect model
y <- computvcov$ef
MMA_FE <- summary(metafixed(y = y, Slist = computvcov$list.vcov))
#######################################################################
# Running random-effects model using package "mixmeta" or "metaSEM"
#######################################################################
# Restricted maximum likelihood (REML) estimator from the mixmeta package
#library(mixmeta)
#mvmeta_RE <- summary(mixmeta(cbind(SMD_SBP, SMD_DBP)~1,
#                     S = S,
#                     data = y,
#                     method = "reml"))
#mvmeta_RE

# maximum likelihood estimators from the metaSEM package
# library(metaSEM)
# metaSEM_RE <- summary(meta(y = y, v = S))
# metaSEM_RE
##############################################################
# Plotting the result:
##############################################################
obj <- MMA_FE
# obj <- mvmeta_RE
# obj <- metaSEM_RE
# pdf("CI.pdf", width = 4, height = 7)
plotCI(y = computvcov$ef, v = computvcov$list.vcov,
        name.y = NULL, name.study = Geeganage2010$studyID,
        y.all = obj$coefficients[,1],
        y.all.se = obj$coefficients[,2])
# dev.off()

[Package metavcov version 2.1.5 Index]