view.errors.umbrella {metaumbrella} | R Documentation |
Detect incorrect formatting of a dataset
Description
Check the formatting of a dataset to ensure it can be passed to the functions of the metaumbrella package.
Usage
view.errors.umbrella(data, return = "data_and_messages")
Arguments
data |
a dataframe |
return |
the type of information returned by the function. Must be either "messages", "data_and_messages", or "data". |
Details
The functions included in the metaumbrella package require very specific formatting of the dataset (see metaumbrella-package
).
The view.errors.umbrella()
function checks that a dataframe meets all requirements of the functions of the metaumbrella package.
If this function finds some formatting issues, error messages describing the issues are produced and the rows / columns in which the issues occurred are identified.
Value
Depending on the value passed to the return
argument, different information is returned:
"messages" | return global messages describing the different formatting issues. |
"data" | return the rows of the original dataset with formatting issues (see below). |
"data_and_messages" | return both (i) global messages describing the different formatting issues and |
(ii) the rows of the original dataset with formatting issues (see below). |
When returning a dataset (i.e., when "data"
or "data_and_messages"
are indicated in the return argument), the rows with problematic formatting are identified and
two new columns are added to the original dataset (column_type_errors
and column_errors
). These columns help to understand formatting issues.
A WARNING value in the
column_type_errors
column indicates a potential issue that should be checked but that do not prevent calculations.An ERROR value in the
column_type_errors
column indicates an issue that must be solved before running calculations.The text in the
column_errors
describes the issues encountered for each problematic row.
Examples
df.errors1 <- df.errors2 <- df.errors3 <- df.errors4 <- df.OR
### include some unknown measures
df.errors1$measure[c(1,4,12)] <- "unknown_measure"
view.errors.umbrella(df.errors1, return = "data_and_messages")
### include some not numeric inputs while expected
df.errors2$value[c(2,13,15)] <- c("a", "b", "c")
view.errors.umbrella(df.errors2, return = "data")
### make the lower bound of a confidence interval > to the value
df.errors3$ci_lo[c(12,14,21)] <- c(5,6,7)
view.errors.umbrella(df.errors3, return = "messages")
### create errors in sample sizes
df.errors4$n_cases_exp[c(5,10,15)] <- c(100, 200, 300)
view.errors.umbrella(df.errors4, return = "data_and_messages")