mpower {metapower} | R Documentation |
Compute Power for Meta-analysis
Description
Computes statistical power for summary effect sizes in meta-analysis.
Usage
mpower(
effect_size,
study_size,
k,
i2,
es_type,
test_type = "two-tailed",
p = 0.05,
con_table = NULL
)
Arguments
effect_size |
Numerical value of effect size. | ||||||||||
study_size |
Numerical value for number number of participants (per study). | ||||||||||
k |
Numerical value for total number of studies. | ||||||||||
i2 |
Numerical value for Heterogeneity estimate (i^2). | ||||||||||
es_type |
Character reflecting effect size metric: 'r', 'd', or 'or'. | ||||||||||
test_type |
Character value reflecting test type: ("two-tailed" or "one-tailed"). | ||||||||||
p |
Numerical value for significance level (Type I error probability). | ||||||||||
con_table |
(Optional) Numerical values for 2x2 contingency table as a vector in the following format: c(a,b,c,d).
|
Value
Estimated Power
References
Borenstein, M., Hedges, L. V., Higgins, J. P. T. and Rothstein, H. R.(2009). Introduction to meta-analysis, Chichester, UK: Wiley.
Hedges, L., Pigott, T. (2004). The Power of Statistical Tests for Moderators in Meta-Analysis, Psychological Methods, 9(4), 426-445 doi: https://dx.doi.org/10.1037/1082-989x.9.4.426
Pigott, T. (2012). Advances in Meta-Analysis. doi: https://dx.doi.org/10.1007/978-1-4614-2278-5
Jackson, D., Turner, R. (2017). Power analysis for random-effects meta-analysis, Research Synthesis Methods, 8(3), 290-302 doi: https://dx.doi.org/10.1002/jrsm.1240
See Also
https://jason-griffin.shinyapps.io/shiny_metapower/
Examples
mpower(effect_size = .2, study_size = 10, k = 10, i2 = .5, es_type = "d")