mod_power {metapower} | R Documentation |
Compute Power for Categorical Moderator Analysis in Meta-analysis
Description
Computes statistical power for categorical moderator analysis under fixed and random effects models.
Usage
mod_power(
n_groups,
effect_sizes,
study_size,
k,
i2,
es_type,
p = 0.05,
con_table = NULL
)
Arguments
n_groups |
Numerical value for the levels of a categorical variable. | ||||||||||
effect_sizes |
Numerical values for effect sizes of for each group. | ||||||||||
study_size |
Numerical value for number of participants (per study). | ||||||||||
k |
Numerical value for total number of studies. | ||||||||||
i2 |
Numerical value for Heterogeneity estimate (i^2). | ||||||||||
es_type |
Character reflecting effect size metric: 'r', 'd', or 'or'. | ||||||||||
p |
Numerical value for significance level (Type I error probability). | ||||||||||
con_table |
(Optional) List of numerical values for 2x2 contingency tables as a vector in the following format: c(a,b,c,d). These should be specified for each group(i.e., n_groups).
|
Value
Estimated Power estimates for moderator analysis under fixed- and random-effects models
See Also
https://jason-griffin.shinyapps.io/shiny_metapower/
Examples
mod_power(n_groups = 2,
effect_sizes = c(.1,.5),
study_size = 20,
k = 10,
i2 = .50,
es_type = "d")
mod_power(n_groups = 2,
con_table = list(g1 = c(6,5,4,5), g2 = c(8,5,2,5)),
study_size = 40,
k = 20,
i2 = .50,
es_type = "or")