metaplot.data.frame {metaplot} | R Documentation |
Create Metaplot for Data Frame.
Description
Creates a metaplot for class 'data.frame'. Implements a rule to decided whether to make a density plot, a boxplot, a scatter plot, or a scatterplot matrix, given the supplied column names.
Usage
## S3 method for class 'data.frame'
metaplot(
x,
...,
univariate = metOption("univariate", "densplot"),
mixedvariate = metOption("mixedvariate", "boxplot"),
bivariate = metOption("bivariate", "scatter"),
multivariate = metOption("multivariate", "corsplom"),
categorical = metOption("categorical", "categorical"),
verbose = metOption("verbose", FALSE)
)
Arguments
x |
object |
... |
passed arguments |
univariate |
function for univariate arguments |
mixedvariate |
function for bivariate combinations of numeric and categoral arguments |
bivariate |
function for arguments that resolve to two numerics (see rules) |
multivariate |
function for more than two numeric arguments |
categorical |
function for categorical arguments |
verbose |
generate messages describing process; passed to called functions if explicitly supplied |
See Also
Other methods:
axislabel.data.frame()
,
boxplot.data.frame()
,
categorical.data.frame()
,
corsplom.data.frame()
,
densplot.data.frame()
,
pack.data.frame()
,
plot.metaplot_gtable()
,
print.metaplot_gtable()
,
scatter.data.frame()
,
unpack.data.frame()
Other univariate plots:
dens_panel()
,
densplot.data.frame()
,
densplot_data_frame()
,
densplot()
,
panel.meta_densityplot()
Other bivariate plots:
iso_prepanel()
,
scatter.data.frame()
,
scatter_data_frame()
,
scatter()
Other multivariate plots:
corsplom.data.frame()
,
corsplom_data_frame()
Examples
## Not run:
library(magrittr)
library(dplyr)
library(csv)
library(nlme)
x <- Theoph
# mixed effects model
m1 <- nlme(
conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
data = x,
fixed = lKe + lKa + lCl ~ 1,
random = lKe + lKa + lCl ~ 1
)
# some numeric and categorical properties
names(x) <- tolower(names(x))
x %<>% mutate(arm = ifelse(as.numeric(as.character(subject)) %% 2 == 0, 1, 2))
x %<>% mutate(site = ifelse(as.numeric(as.character(subject)) < 6, 1, 2))
x %<>% mutate(cohort = ifelse(as.numeric(as.character(subject)) %in% c(1:2,6:8), 1,2))
x %<>% mutate(pred = predict(m1,level = 0) %>% signif(4))
x %<>% mutate(ipred = predict(m1) %>% signif(4))
x %<>% mutate(res = residuals(m1) %>% signif(4))
x %<>% mutate(sres = residuals(m1, type = 'pearson') %>% signif(4))
r <- ranef(m1) %>% signif(4)
r$subject <- rownames(r)
x %<>% left_join(r)
# metadata
attr(x$subject,'label') <- 'subject identifier'
attr(x$wt,'label') <- 'subject weight'
attr(x$dose,'label') <- 'theophylline dose'
attr(x$time,'label') <- 'time since dose administration'
attr(x$conc,'label') <- 'theophylline concentration'
attr(x$arm,'label') <- 'trial arm'
attr(x$site,'label') <- 'investigational site'
attr(x$cohort,'label') <- 'recruitment cohort'
attr(x$pred,'label') <- 'population-predicted concentration'
attr(x$ipred,'label') <- 'individual-predicted concentration'
attr(x$res,'label') <- 'residuals'
attr(x$sres,'label') <- 'standardized residuals'
attr(x$lKe,'label') <- 'natural log of elimination rate constant'
attr(x$lKa,'label') <- 'natural log of absorption rate constant'
attr(x$lCl,'label') <- 'natural log of clearance'
attr(x$subject,'guide') <- '....'
attr(x$wt,'guide') <- 'kg'
attr(x$dose,'guide') <- 'mg/kg'
attr(x$time,'guide') <- 'h'
attr(x$conc,'guide') <- 'mg/L'
attr(x$arm,'guide') <- '//1/Arm A//2/Arm B//'
attr(x$site,'guide') <- '//1/Site 1//2/Site 2//'
attr(x$cohort,'guide') <- '//1/Cohort 1//2/Cohort 2//'
attr(x$pred,'guide') <- 'mg/L'
attr(x$ipred,'guide') <- 'mg/L'
attr(x$lKe,'reference') <- 0
attr(x$lKa,'reference') <- 0
attr(x$lCl,'reference') <- 0
attr(x$res,'reference') <- 0
attr(x$sres,'reference') <- '//-1.96//1.96//'
attr(x$subject,'symbol') <- 'ID_i'
attr(x$wt,'symbol') <- 'W_i'
attr(x$dose,'symbol') <- 'A_i'
attr(x$time,'symbol') <- 't_i,j'
attr(x$conc,'symbol') <- 'C_i,j'
attr(x$arm,'symbol') <- 'Arm_i'
attr(x$site,'symbol') <- 'Site_i'
attr(x$cohort,'symbol') <- 'Cohort_i'
attr(x$pred,'symbol') <- 'C_pred_p'
attr(x$ipred,'symbol') <- 'C_pred_i'
attr(x$res,'symbol') <- '\\epsilon'
attr(x$sres,'symbol') <- '\\epsilon_st'
attr(x$lKe,'symbol') <- 'ln(K_e.)'
attr(x$lKa,'symbol') <- 'ln(K_a.)'
attr(x$lCl,'symbol') <- 'ln(Cl_c./F)'
x %>% unpack %>% as.csv('theoph.csv')
## End(Not run)