utils_num_str {metan}R Documentation

Utilities for handling with numbers and strings

Description

[Stable]

Usage

all_upper_case(.data, ...)

all_lower_case(.data, ...)

all_title_case(.data, ...)

first_upper_case(.data, ...)

extract_number(.data, ..., pattern = NULL)

extract_string(.data, ..., pattern = NULL)

find_text_in_num(.data, ...)

has_text_in_num(.data)

remove_space(.data, ...)

remove_strings(.data, ...)

replace_number(
  .data,
  ...,
  pattern = NULL,
  replacement = "",
  ignore_case = FALSE
)

replace_string(
  .data,
  ...,
  pattern = NULL,
  replacement = "",
  ignore_case = FALSE
)

round_cols(.data, ..., digits = 2)

tidy_strings(.data, ..., sep = "_")

Arguments

.data

A data frame

...

The argument depends on the function used.

  • For round_cols() ... are the variables to round. If no variable is informed, all the numeric variables from data are used.

  • For all_lower_case(), all_upper_case(), all_title_case(), stract_number(), stract_string(), remove_strings(), and tidy_strings() ... are the variables to apply the function. If no variable is informed, the function will be applied to all non-numeric variables in .data.

pattern

A string to be matched. Regular Expression Syntax is also allowed.

replacement

A string for replacement.

ignore_case

If FALSE (default), the pattern matching is case sensitive and if TRUE, case is ignored during matching.

digits

The number of significant figures.

sep

A character string to separate the terms. Defaults to "_".

Author(s)

Tiago Olivoto tiagoolivoto@gmail.com

Examples


library(metan)

################ Rounding numbers ###############
# All numeric columns
round_cols(data_ge2, digits = 1)

# Round specific columns
round_cols(data_ge2, EP, digits = 1)

########### Extract or replace numbers ##########
# Extract numbers
extract_number(data_ge, GEN)
# Replace numbers
replace_number(data_ge, GEN)
replace_number(data_ge,
               GEN,
               pattern = 1,
               replacement = "_one")

########## Extract, replace or remove strings ##########
# Extract strings
extract_string(data_ge, GEN)

# Replace strings
replace_string(data_ge, GEN)
replace_string(data_ge,
               GEN,
               pattern = "G",
               replacement = "GENOTYPE_")

# Remove strings
remove_strings(data_ge)
remove_strings(data_ge, ENV)


############ Find text in numeric sequences ###########
mixed_text <- data.frame(data_ge)
mixed_text[2, 4] <- "2..503"
mixed_text[3, 4] <- "3.2o75"
find_text_in_num(mixed_text, GY)

############# upper, lower and title cases ############
gen_text <- c("This is the first string.", "this is the second one")
all_lower_case(gen_text)
all_upper_case(gen_text)
all_title_case(gen_text)
first_upper_case(gen_text)

# A whole data frame
all_lower_case(data_ge)


############### Tidy up messy text string ##############
messy_env <- c("ENV 1", "Env   1", "Env1", "env1", "Env.1", "Env_1")
tidy_strings(messy_env)

messy_gen <- c("GEN1", "gen 2", "Gen.3", "gen-4", "Gen_5", "GEN_6")
tidy_strings(messy_gen)

messy_int <- c("EnvGen", "Env_Gen", "env gen", "Env Gen", "ENV.GEN", "ENV_GEN")
tidy_strings(messy_int)

library(tibble)
# Or a whole data frame
df <- tibble(Env = messy_env,
             gen = messy_gen,
             Env_GEN = interaction(Env, gen),
             y = rnorm(6, 300, 10))
df
tidy_strings(df)


[Package metan version 1.18.0 Index]