mps {metan} | R Documentation |
Mean performance and stability in multi-environment trials
Description
This function implements the weighting method between mean performance and stability (Olivoto et al., 2019) considering different parametric and non-parametric stability indexes.
Usage
mps(
.data,
env,
gen,
rep,
resp,
block = NULL,
by = NULL,
random = "gen",
performance = c("blupg", "blueg"),
stability = "waasb",
ideotype_mper = NULL,
ideotype_stab = NULL,
wmper = NULL,
verbose = TRUE
)
Arguments
.data |
The dataset containing the columns related to Environments, Genotypes, replication/block and response variable(s). |
env |
The name of the column that contains the levels of the environments. |
gen |
The name of the column that contains the levels of the genotypes. |
rep |
The name of the column that contains the levels of the replications/blocks. |
resp |
The response variable(s). To analyze multiple variables in a
single procedure a vector of variables may be used. For example |
block |
Defaults to |
by |
One variable (factor) to compute the function by. It is a shortcut
to |
random |
The effects of the model assumed to be random. Defaults to
|
performance |
Wich considers as mean performance. Either |
stability |
The stability method. One of the following:
|
ideotype_mper , ideotype_stab |
The new maximum value after rescaling the
response variable/stability index. By default, all variables in |
wmper |
The weight for the mean performance. By default, all variables
in |
verbose |
Logical argument. If |
Value
An object of class mps
with the following items.
-
observed
: The observed value on a genotype-mean basis. -
performance
: The performance for genotypes (BLUPs or BLUEs) -
performance_res
: The rescaled values of genotype's performance, consideringideotype_mper
. -
stability
: The stability for genotypes, chosen with argumentstability
. -
stability_res
: The rescaled values of genotype's stability, consideringideotype_stab
. -
mps_ind
: The mean performance and stability for the traits. -
h2
: The broad-sense heritability for the traits. -
perf_method
: The method for measuring genotype's performance. -
wmper
: The weight for the mean performance. -
sense_mper
: The goal for genotype's performance (l
= lower,h
= higher). -
stab_method
: The method for measuring genotype's stability. -
wstab
: The weight for the mean stability. -
sense_stab
: The goal for genotype's stability (l
= lower,h
= higher).
Author(s)
Tiago Olivoto tiagoolivoto@gmail.com
References
Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. J. Genet. Breed. 46:269-278.
Doring, T.F., S. Knapp, and J.E. Cohen. 2015. Taylor's power law and the stability of crop yields. F. Crop. Res. 183: 294-302. doi:10.1016/j.fcr.2015.08.005
Doring, T.F., and M. Reckling. 2018. Detecting global trends of cereal yield stability by adjusting the coefficient of variation. Eur. J. Agron. 99: 30-36. doi:10.1016/j.eja.2018.06.007
Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing Varieties. Crop Sci. 6:36-40. doi:10.2135/cropsci1966.0011183X000600010011x
Huehn, V.M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol. 10:112.
Lin, C.S., and M.R. Binns. 1988. A superiority measure of cultivar performance for cultivar x location data. Can. J. Plant Sci. 68:193-198. doi:10.4141/cjps88-018
Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3), 419-432. doi:10.1007/s10681-007-9600-6
Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. doi:10.2134/agronj2019.03.0220
Resende MDV (2007) Matematica e estatistica na analise de experimentos e no melhoramento genetico. Embrapa Florestas, Colombo
Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity. 29:238-245. doi:10.1038/hdy.1972.87
Thennarasu, K. 1995. On certain nonparametric procedures for studying genotype x environment interactions and yield stability. Ph.D. thesis. P.J. School, IARI, New Delhi, India.
Wricke, G. 1965. Zur berechnung der okovalenz bei sommerweizen und hafer. Z. Pflanzenzuchtg 52:127-138.
See Also
Examples
library(metan)
# The same approach as mtsi()
# mean performance and stability for GY and HM
# mean performance: The genotype's BLUP
# stability: the WAASB index (lower is better)
# weights: equal for mean performance and stability
model <-
mps(data_ge,
env = ENV,
gen = GEN,
rep = REP,
resp = everything())
# The mean performance and stability after rescaling
model$mps_ind