| inspect {metan} | R Documentation |
Check for common errors in multi-environment trial data
Description
inspect() scans a data.frame object for errors that may affect the use
of functions in metan. By default, all variables are checked regarding
the class (numeric or factor), missing values, and presence of possible
outliers. The function will return a warning if the data looks like
unbalanced, has missing values or possible outliers.
Usage
inspect(.data, ..., plot = FALSE, threshold = 15, verbose = TRUE)
Arguments
.data |
The data to be analyzed |
... |
The variables in |
plot |
Create a plot to show the check? Defaults to |
threshold |
Maximum number of levels allowed in a character / factor column to produce a plot. Defaults to 15. |
verbose |
Logical argument. If |
Value
A tibble with the following variables:
-
Variable The name of variable
-
Class The class of the variable
-
Missing Contains missing values?
-
Levels The number of levels of a factor variable
-
Valid_n Number of valid n (omit NAs)
-
Outlier Contains possible outliers?
Author(s)
Tiago Olivoto tiagoolivoto@gmail.com
Examples
library(metan)
inspect(data_ge)
# Create a toy example with messy data
df <- data_ge2[-c(2, 30, 45, 134), c(1:5)] %>% as.data.frame()
df[c(1, 20, 50), 5] <- NA
df[40, 4] <- "2..814"
inspect(df)