corr_ci {metan} | R Documentation |
Confidence interval for correlation coefficient
Description
Computes the half-width confidence interval for correlation coefficient using the nonparametric method proposed by Olivoto et al. (2018).
The half-width confidence interval is computed according to the following equation:
\[CI_w = 0.45304^r \times 2.25152 \times n^{-0.50089}\]where \(n\) is the sample size and \(r\) is the correlation coefficient.
Usage
corr_ci(
.data = NA,
...,
r = NULL,
n = NULL,
by = NULL,
sel.var = NULL,
verbose = TRUE
)
Arguments
.data |
The data to be analyzed. It can be a data frame (possible with
grouped data passed from |
... |
Variables to compute the confidence interval. If not informed, all
the numeric variables from |
r |
If |
n |
The sample size if |
by |
One variable (factor) to compute the function by. It is a shortcut
to |
sel.var |
A variable to shows the correlation with. This will omit all
the pairwise correlations that doesn't contain |
verbose |
If |
Value
A tibble containing the values of the correlation, confidence interval, upper and lower limits for all combination of variables.
Author(s)
Tiago Olivoto tiagoolivoto@gmail.com
References
Olivoto, T., A.D.C. Lucio, V.Q. Souza, M. Nardino, M.I. Diel, B.G. Sari, D.. K. Krysczun, D. Meira, and C. Meier. 2018. Confidence interval width for Pearson's correlation coefficient: a Gaussian-independent estimator based on sample size and strength of association. Agron. J. 110:1-8. doi:10.2134/agronj2016.04.0196
Examples
library(metan)
CI1 <- corr_ci(data_ge2)
# By each level of the factor 'ENV'
CI2 <- corr_ci(data_ge2, CD, TKW, NKE,
by = ENV,
verbose = FALSE)
CI2