anova_joint {metan}R Documentation

Joint analysis of variance

Description

[Stable]

Performs a joint analysis of variance to check for the presence of genotype-vs-environment interactions using both randomized complete block and alpha-lattice designs.

Usage

anova_joint(.data, env, gen, rep, resp, block = NULL, verbose = TRUE)

Arguments

.data

The dataset containing the columns related to Environments, Genotypes, replication/block and response variable(s).

env

The name of the column that contains the levels of the environments. The analysis of variance is computed for each level of this factor.

gen

The name of the column that contains the levels of the genotypes.

rep

The name of the column that contains the levels of the replications/blocks.

resp

The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3).

block

Defaults to NULL. In this case, a randomized complete block design is considered. If block is informed, then a resolvable alpha-lattice design (Patterson and Williams, 1976) is employed. All effects, except the error, are assumed to be fixed.

verbose

Logical argument. If verbose = FALSE the code will run silently.

Value

A list where each element is the result for one variable containing the following objects:

Author(s)

Tiago Olivoto tiagoolivoto@gmail.com

References

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.

See Also

get_model_data() anova_ind()

Examples


library(metan)
# traditional usage approach
j_an <- anova_joint(data_ge,
                    env = ENV,
                    gen = GEN,
                    rep = REP,
                    resp = everything())
# Predicted values
get_model_data(j_an)

# Details
get_model_data(j_an, "details")



[Package metan version 1.18.0 Index]