GOA {metaheuristicOpt} | R Documentation |
Optimization using Grasshopper Optimisation Algorithm
Description
This is the internal function that implements Grasshopper
Algorithm. It is used to solve continuous optimization tasks.
Users do not need to call it directly,
but just use metaOpt
.
Usage
GOA(FUN, optimType = "MIN", numVar, numPopulation = 40,
maxIter = 500, rangeVar)
Arguments
FUN |
an objective function or cost function, |
optimType |
a string value that represent the type of optimization.
There are two option for this arguments: |
numVar |
a positive integer to determine the number variables. |
numPopulation |
a positive integer to determine the number populations. The default value is 40. |
maxIter |
a positive integer to determine the maximum number of iterations. The default value is 500. |
rangeVar |
a matrix ( |
Details
Grasshopper Optimisation Algorithm (GOA) was proposed by (Mirjalili et al., 2017). The algorithm mathematically models and mimics the behaviour of grasshopper swarms in nature for solving optimisation problems.
Value
Vector [v1, v2, ..., vn]
where n
is number variable
and vn
is value of n-th
variable.
References
Shahrzad Saremi, Seyedali Mirjalili, Andrew Lewis, Grasshopper Optimisation Algorithm: Theory and application, Advances in Engineering Software, Volume 105, March 2017, Pages 30-47, ISSN 0965-9978, https://doi.org/10.1016/j.advengsoft.2017.01.004
See Also
Examples
##################################
## Optimizing the schewefel's problem 1.2 function
# define schewefel's problem 1.2 function as objective function
schewefels1.2 <- function(x){
dim <- length(x)
result <- 0
for(i in 1:dim){
result <- result + sum(x[1:i])^2
}
return(result)
}
## Define parameter
numVar <- 5
rangeVar <- matrix(c(-10,10), nrow=2)
## calculate the optimum solution using grasshoper algorithm
resultGOA <- GOA(schewefels1.2, optimType="MIN", numVar, numPopulation=20,
maxIter=100, rangeVar)
## calculate the optimum value using schewefel's problem 1.2 function
optimum.value <- schewefels1.2(resultGOA)