dat.pritz1997 {metadat} | R Documentation |
Studies on the Effectiveness of Hyperdynamic Therapy for Treating Cerebral Vasospasm
Description
Results from 14 studies on the effectiveness of hyperdynamic therapy for treating cerebral vasospasm.
Usage
dat.pritz1997
Format
The data frame contains the following columns:
study | numeric | study number |
authors | character | study authors |
xi | numeric | number of patients that improved with hyperdynamic therapy |
ni | numeric | total number of patients treated |
Details
As described in Zhou et al. (1999), "hyperdynamic therapy refers to induced hypertension and hypervolaemia (volume expansion) to treat ischaemic symptoms due to vasospasm, and the success of this therapy is defined as clinical improvement in terms of neurologic deficits." For each study that was included in the meta-analysis, the dataset includes information on the number of patients that improved under this form of therapy and the total number of patients that were treated. The goal of the meta-analysis is to estimate the true (average) success rate of hyperdynamic therapy.
Concepts
medicine, single-arm studies, proportions
Author(s)
Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org
Source
Zhou, X.-H., Brizendine, E. J., & Pritz, M. B. (1999). Methods for combining rates from several studies. Statistics in Medicine, 18(5), 557–566. https://doi.org/10.1002/(SICI)1097-0258(19990315)18:5<557::AID-SIM53>3.0.CO;2-F
References
Pritz M. B., Zhou, X.-H., & Brizendine, E. J. (1996). Hyperdynamic therapy for cerebral vasospasm: A meta-analysis of 14 studies. Journal of Neurovascular Disease, 1, 6–8.
Pritz, M. B. (1997). Treatment of cerebral vasospasm due to aneurysmal subarachnoid hemorrhage: Past, present, and future of hyperdynamic therapy. Neurosurgery Quarterly, 7(4), 273–285.
Examples
### copy data into 'dat' and examine data
dat <- dat.pritz1997
dat
## Not run:
### load metafor package
library(metafor)
### computation of "weighted average" in Zhou et al. (1999), Table IV
dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat, add=0)
theta.hat <- sum(dat$ni * dat$yi) / sum(dat$ni)
se.theta.hat <- sqrt(sum(dat$ni^2 * dat$vi) / sum(dat$ni)^2)
ci.lb <- theta.hat - 1.96 * se.theta.hat
ci.ub <- theta.hat + 1.96 * se.theta.hat
round(c(estimate = theta.hat, se = se.theta.hat, ci.lb = ci.lb, ci.ub = ci.ub), 4)
### this is identical to an equal-effects model with sample size weights
rma(yi, vi, weights=ni, method="EE", data=dat)
### random-effects model with raw proportions
dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat)
res <- rma(yi, vi, data=dat)
predict(res)
### random-effects model with logit transformed proportions
dat <- escalc(measure="PLO", xi=xi, ni=ni, data=dat)
res <- rma(yi, vi, data=dat)
predict(res, transf=transf.ilogit)
### mixed-effects logistic regression model
res <- rma.glmm(measure="PLO", xi=xi, ni=ni, data=dat)
predict(res, transf=transf.ilogit)
## End(Not run)