dat.normand1999 {metadat} | R Documentation |
Studies on the Length of Hospital Stay of Stroke Patients
Description
Results from 9 studies on the length of the hospital stay of stroke patients under specialized care and under conventional/routine (non-specialist) care.
Usage
dat.normand1999
Format
The data frame contains the following columns:
study | numeric | study number |
source | character | source of data |
n1i | numeric | number of patients under specialized care |
m1i | numeric | mean length of stay (in days) under specialized care |
sd1i | numeric | standard deviation of the length of stay under specialized care |
n2i | numeric | number of patients under routine care |
m2i | numeric | mean length of stay (in days) under routine care |
sd2i | numeric | standard deviation of the length of stay under routine care |
Details
The 9 studies provide data in terms of the mean length of the hospital stay (in days) of stroke patients under specialized care and under conventional/routine (non-specialist) care. The goal of the meta-analysis was to examine the hypothesis whether specialist stroke unit care will result in a shorter length of hospitalization compared to routine management.
Concepts
medicine, raw mean differences, standardized mean differences
Author(s)
Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org
Source
Normand, S. T. (1999). Meta-analysis: Formulating, evaluating, combining, and reporting. Statistics in Medicine, 18(3), 321–359. https://doi.org/10.1002/(sici)1097-0258(19990215)18:3<321::aid-sim28>3.0.co;2-p
Examples
### copy data into 'dat' and examine data
dat <- dat.normand1999
dat
## Not run:
### load metafor package
library(metafor)
### calculate mean differences and corresponding sampling variances
dat <- escalc(measure="MD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat)
dat
### meta-analysis of mean differences using a random-effects model
res <- rma(yi, vi, data=dat)
res
### meta-analysis of standardized mean differences using a random-effects model
res <- rma(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i,
data=dat, slab=source)
res
### draw forest plot
forest(res, xlim=c(-7,5), alim=c(-3,1), header="Study/Source")
### calculate (log transformed) ratios of means and corresponding sampling variances
dat <- escalc(measure="ROM", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat)
dat
### meta-analysis of the (log transformed) ratios of means using a random-effects model
res <- rma(yi, vi, data=dat)
res
predict(res, transf=exp, digits=2)
## End(Not run)