dat.lim2014 {metadat} | R Documentation |
Studies on the Association Between Maternal Size, Offspring Size, and Number of Offsprings
Description
Results from studies examining the association between maternal size, offspring size, and number of offsprings.
Usage
dat.lim2014
Format
The object is a list containing data frames m_o_size
, m_o_fecundity
, o_o_unadj
, and o_o_adj
that contain the following columns and the corresponding phylogenetic trees called m_o_size_tree
, m_o_fecundity_tree
, o_o_unadj_tree
, and o_o_adj_tree
:
article | numeric | article id |
author | character | study author(s) |
year | numeric | publication year |
species | character | species |
amniotes | character | whether the species was amniotic |
environment | character | whether the species were wild or captive |
reprounit | character | whether the data were based on lifetime reproductive output or a single reproductive event (only in m_o_size and m_o_fecundity ) |
ri | numeric | correlation coefficient |
ni | numeric | sample size |
Details
The object dat.lim2014
includes 4 datasets:
m_o_size | on the correlation between maternal size and offspring size |
m_o_fecundity | on the correlation between maternal size and number of offsprings |
o_o_unadj | on the correlation between offspring size and number of offsprings |
o_o_adj | on the correlation between offspring size and number of offsprings adjusted for maternal size |
Objects m_o_size_tree
, m_o_fecundity_tree
, o_o_unadj_tree
, and o_o_adj_tree
are the corresponding phylogenetic trees for the species included in each of these datasets.
Concepts
ecology, evolution, correlation coefficients, multilevel models, phylogeny
Author(s)
Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org
Source
Lim, J. N., Senior, A. M., & Nakagawa, S. (2014). Heterogeneity in individual quality and reproductive trade-offs within species. Evolution, 68(8), 2306–2318. https://doi.org/10.1111/evo.12446
References
Cinar, O., Nakagawa, S., & Viechtbauer, W. (in press). Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13760
Hadfield, J. D., & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23(3), 494–508. https://doi.org/10.1111/j.1420-9101.2009.01915.x
Nakagawa, S., & Santos, E. S. A. (2012). Methodological issues and advances in biological meta-analysis. Evolutionary Ecology, 26(5), 1253–1274. https://doi.org/10.1007/s10682-012-9555-5
Examples
### copy data into 'dat' and examine data
dat <- dat.lim2014$o_o_unadj
dat[1:14, -c(2:3)]
## Not run:
### load metafor package
library(metafor)
### load ape package
library(ape, warn.conflicts=FALSE)
### calculate r-to-z transformed correlations and corresponding sampling variances
dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat)
### copy tree to 'tree'
tree <- dat.lim2014$o_o_unadj_tree
### compute branch lengths
tree <- compute.brlen(tree)
### compute phylogenetic correlation matrix
A <- vcv(tree, corr=TRUE)
### make copy of the species variable
dat$species.phy <- dat$species
### create effect size id variable
dat$esid <- 1:nrow(dat)
### fit multilevel phylogenetic meta-analytic model
res <- rma.mv(yi, vi,
random = list(~ 1 | article, ~ 1 | esid, ~ 1 | species, ~ 1 | species.phy),
R=list(species.phy=A), data=dat)
res
## End(Not run)