dat.collins1985a {metadat} | R Documentation |
Studies on the Treatment of Upper Gastrointestinal Bleeding by a Histamine H2 Antagonist
Description
Results from studies examining the effectiveness of histamine H2 antagonists (cimetidine or ranitidine) in treating patients with acute upper gastrointestinal hemorrhage.
Usage
dat.collins1985a
Format
The data frame contains the following columns:
id | numeric | study number |
trial | character | first author of trial |
year | numeric | year of publication |
ref | numeric | reference number |
trt | character | C = cimetidine, R = ranitidine |
ctrl | character | P = placebo, AA = antacids, UT = usual treatment |
nti | numeric | number of patients in treatment group |
b.xti | numeric | number of patients in treatment group with persistent or recurrent bleedings |
o.xti | numeric | number of patients in treatment group in need of operation |
d.xti | numeric | number of patients in treatment group that died |
nci | numeric | number of patients in control group |
b.xci | numeric | number of patients in control group with persistent or recurrent bleedings |
o.xci | numeric | number of patients in control group in need of operation |
d.xci | numeric | number of patients in control group that died |
Details
The data were obtained from Tables 1 and 2 in Collins and Langman (1985). The authors used Peto's (one-step) method for meta-analyzing the 27 trials. This approach is implemented in the rma.peto
function. Using the same dataset, van Houwelingen, Zwinderman, and Stijnen (1993) describe some alternative approaches for analyzing these data, including fixed- and random-effects conditional logistic models. Those are implemented in the rma.glmm
function.
Concepts
medicine, odds ratios, Peto's method, generalized linear models
Author(s)
Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org
Source
Collins, R., & Langman, M. (1985). Treatment with histamine H2 antagonists in acute upper gastrointestinal hemorrhage. New England Journal of Medicine, 313(11), 660–666. https://doi.org/10.1056/NEJM198509123131104
References
van Houwelingen, H. C., Zwinderman, K. H., & Stijnen, T. (1993). A bivariate approach to meta-analysis. Statistics in Medicine, 12(24), 2273–2284. https://doi.org/10.1002/sim.4780122405
Examples
### copy data into 'dat' and examine data
dat <- dat.collins1985a
dat
## Not run:
### load metafor package
library(metafor)
### meta-analysis of log ORs using Peto's method (outcome: persistent or recurrent bleedings)
res <- rma.peto(ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat)
print(res, digits=2)
### meta-analysis of log ORs using a conditional logistic regression model (FE model)
res <- rma.glmm(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat,
model="CM.EL", method="FE")
summary(res)
predict(res, transf=exp, digits=2)
### plot the likelihoods of the odds ratios
llplot(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat,
lwd=1, refline=NA, xlim=c(-4,4), drop00=FALSE)
### meta-analysis of log odds ratios using a conditional logistic regression model (RE model)
res <- rma.glmm(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat,
model="CM.EL", method="ML")
summary(res)
predict(res, transf=exp, digits=2)
### meta-analysis of log ORs using Peto's method (outcome: need for surgery)
res <- rma.peto(ai=o.xti, n1i=nti, ci=o.xci, n2i=nci, data=dat)
print(res, digits=2)
### meta-analysis of log ORs using Peto's method (outcome: death)
res <- rma.peto(ai=d.xti, n1i=nti, ci=d.xci, n2i=nci, data=dat)
print(res, digits=2)
## End(Not run)