Hunter83 {metaSEM} | R Documentation |
Fourteen Studies of Correlation Matrices reported by Hunter (1983)
Description
This dataset includes fourteen studies of Correlation Matrices reported by Hunter (1983)
Usage
data(Hunter83)
Details
A list of data with the following structure:
- data
A list of 14 studies of correlation matrices. The variables are Ability, Job knowledge, Work sample and Supervisor rating
- n
A vector of sample sizes
Source
Hunter, J. E. (1983). A causal analysis of cognitive ability, job knowledge, job performance, and supervisor ratings. In F. Landy, S. Zedeck, & J. Cleveland (Eds.), Performance Measurement and Theory (pp. 257-266). Hillsdale, NJ: Erlbaum.
Examples
data(Hunter83)
#### Fixed-effects model
## First stage analysis
fixed1 <- tssem1(Hunter83$data, Hunter83$n, method="FEM",
model.name="TSSEM1 fixed effects model")
summary(fixed1)
#### Second stage analysis
## Model without direct effect from Ability to Supervisor
## A1 <- create.mxMatrix(c(0,"0.1*A2J","0.1*A2W",0,0,0,"0.1*J2W","0.1*J2S",
## 0,0,0,"0.1*W2S",0,0,0,0),
## type="Full", ncol=4, nrow=4, as.mxMatrix=FALSE)
## ## This step is not necessary but it is useful for inspecting the model.
## dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c("Ability","Job","Work","Supervisor")
## A1
## S1 <- create.mxMatrix(c(1,"0.1*Var_e_J", "0.1*Var_e_W", "0.1*Var_e_S"),
## type="Diag", as.mxMatrix=FALSE)
## dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c("Ability","Job","Work","Supervisor")
## S1
################################################################################
## Model specification in lavaan model syntax
## The "ind" effect can be defined within the syntax
model1 <- "## Regression paths
Job_knowledge ~ A2J*Ability
Work_sample ~ A2W*Ability + J2W*Job_knowledge
Supervisor ~ J2S*Job_knowledge + W2S*Work_sample
## Fix the variance of Ability at 1
Ability ~~ 1*Ability
## Label the error variances of the dependent variables
Job_knowledge ~~ VarE_J*Job_knowledge
Work_sample ~~ VarE_W*Work_sample
Supervisor ~~ VarE_S*Supervisor
## Define an indirect effect
ind := A2J*J2S+A2J*J2W*W2S+A2W*W2S"
## Display the model
plot(model1, layout="spring", sizeMan=10)
RAM1 <- lavaan2RAM(model1, obs.variables=c("Ability","Job_knowledge",
"Work_sample","Supervisor"))
RAM1
################################################################################
fixed2 <- tssem2(fixed1, RAM=RAM1, intervals.type="z",
diag.constraints=FALSE,
model.name="TSSEM2 fixed effects model")
summary(fixed2)
## Display the model with the parameter estimates
plot(fixed2, layout="spring")
## Coefficients
coef(fixed2)
## VCOV based on parametric bootstrap
vcov(fixed2)
#### Random-effects model with diagonal elements only
## First stage analysis
random1 <- tssem1(Hunter83$data, Hunter83$n, method="REM", RE.type="Diag",
acov="weighted", model.name="TSSEM1 random effects model")
summary(random1)
model2 <- "## Regression paths
Job_knowledge ~ A2J*Ability
Work_sample ~ A2W*Ability + J2W*Job_knowledge
Supervisor ~ J2S*Job_knowledge + W2S*Work_sample
## Fix the variance of Ability at 1
Ability ~~ 1*Ability
## Label the error variances of the dependent variables
Job_knowledge ~~ VarE_J*Job_knowledge
Work_sample ~~ VarE_W*Work_sample
Supervisor ~~ VarE_S*Supervisor"
RAM2 <- lavaan2RAM(model2, obs.variables=c("Ability","Job_knowledge",
"Work_sample","Supervisor"))
RAM2
## Second stage analysis
## Model without direct effect from Ability to Supervisor
## The "ind" effect is defined in tssem2().
random2 <- tssem2(random1, RAM=RAM2, intervals.type="LB",
diag.constraints=FALSE,
mx.algebras=
list(ind=mxAlgebra(A2J*J2S+A2J*J2W*W2S+A2W*W2S, name="ind")),
model.name="TSSEM2 random effects model")
summary(random2)
## Display the model with the parameter estimates
plot(random2, layout="spring")
[Package metaSEM version 1.4.0 Index]