Cooper03 {metaSEM} | R Documentation |
Selected effect sizes from Cooper et al. (2003)
Description
Fifty-six effect sizes from 11 districts from Cooper et al. (2003) were reported by Konstantopoulos (2011).
Usage
data(Cooper03)
Details
The variables are:
- District
District ID
- Study
Study ID
- y
Effect size
- v
Sampling variance
- Year
Year of publication
Source
Cooper, H., Valentine, J. C., Charlton, K., & Melson, A. (2003). The Effects of Modified School Calendars on Student Achievement and on School and Community Attitudes. Review of Educational Research, 73(1), 1-52. doi:10.3102/00346543073001001
References
Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis Methods, 2, 61-76. doi:10.1002/jrsm.35
Examples
data(Cooper03)
#### ML estimation method
## No predictor
summary( model1 <- meta3L(y=y, v=v, cluster=District, data=Cooper03) )
## Show all heterogeneity indices and their 95% confidence intervals
summary( meta3L(y=y, v=v, cluster=District, data=Cooper03,
intervals.type="LB", I2=c("I2q", "I2hm", "I2am", "ICC")) )
## Year as a predictor
summary( meta3L(y=y, v=v, cluster=District, x=scale(Year, scale=FALSE),
data=Cooper03, model.name="Year as a predictor") )
## Equality of level-2 and level-3 heterogeneity
summary( model2 <- meta3L(y=y, v=v, cluster=District, data=Cooper03,
RE2.constraints="0.2*EqTau2",
RE3.constraints="0.2*EqTau2",
model.name="Equal Tau2") )
## Compare model2 vs. model1
anova(model1, model2)
#### REML estimation method
## No predictor
summary( reml3L(y=y, v=v, cluster=District, data=Cooper03) )
## Level-2 and level-3 variances are constrained equally
summary( reml3L(y=y, v=v, cluster=District, data=Cooper03,
RE.equal=TRUE, model.name="Equal Tau2") )
## Year as a predictor
summary( reml3L(y=y, v=v, cluster=District, x=scale(Year, scale=FALSE),
data=Cooper03, intervals.type="LB") )
## Handling missing covariates with FIML
## Create 20/56 MCAR data in Year
set.seed(10000)
Year_MCAR <- Cooper03$Year
Year_MCAR[sample(56, 20)] <- NA
summary( meta3LFIML(y=y, v=v, cluster=District, x2=scale(Year_MCAR, scale=FALSE),
data=Cooper03, model.name="NA in Year_MCAR") )
[Package metaSEM version 1.4.0 Index]