metabolic_scaling {metaRange} | R Documentation |
Metabolic scaling
Description
A function to calculate the metabolic scaling of a parameter, based on the metabolic theory of ecology (Brown et al. 2004).
Usage
metabolic_scaling(
normalization_constant,
scaling_exponent,
mass,
temperature,
E,
k = 8.617333e-05
)
Arguments
normalization_constant |
|
scaling_exponent |
|
mass |
|
temperature |
|
E |
|
k |
|
Details
Equation:
The function uses the equation in the form of:
parameter = normalization\_constant \cdot mass^{scaling\_exponent} \cdot e^{\frac{Activation\_energy}{k \cdot temperature}}
Parameter:
Note the different scaling values for different parameter. The following is a summary from table 4 in Brown, Sibly and Kodric-Brown (2012) (see references).
Parameter | Scaling exponent | Activation energy |
resource usage | 3/4 | -0.65 |
reproduction, mortality | -1/4 | -0.65 |
carrying capacity | -3/4 | 0.65 |
Units:
1 \ electronvolt = 1.602176634 \cdot 10^{-19} Joule
Boltzmann \ constant = 1.380649 \cdot 10^{-23} \frac{Joule}{Kelvin}
Boltzmann \ constant \ in \frac{eV}{K} = 8.617333e-05 = \frac{1.380649 \cdot 10^{-23}}{1.602176634 \cdot 10^{-19}}
Value
<numeric>
The scaled parameter.
References
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B. (2004) Toward a Metabolic Theory of Ecology. Ecology, 85 1771–1789. doi:10.1890/03-9000
Brown, J.H., Sibly, R.M. and Kodric-Brown, A. (2012) Introduction: Metabolism as the Basis for a Theoretical Unification of Ecology. In Metabolic Ecology (eds R.M. Sibly, J.H. Brown and A. Kodric-Brown) doi:10.1002/9781119968535.ch
See Also
calculate_normalization_constant()
Examples
reproduction_rate <- 0.25
E_reproduction_rate <- -0.65
estimated_normalization_constant <-
calculate_normalization_constant(
parameter_value = reproduction_rate,
scaling_exponent = -1/4,
mass = 100,
reference_temperature = 273.15 + 10,
E = E_reproduction_rate
)
metabolic_scaling(
normalization_constant = estimated_normalization_constant,
scaling_exponent = -1/4,
mass = 100,
temperature = 273.15 + 20,
E = E_reproduction_rate
)
carrying_capacity <- 100
E_carrying_capacity <- 0.65
estimated_normalization_constant <-
calculate_normalization_constant(
parameter_value = carrying_capacity,
scaling_exponent = -3/4,
mass = 100,
reference_temperature = 273.15 + 10,
E = E_carrying_capacity
)
metabolic_scaling(
normalization_constant = estimated_normalization_constant,
scaling_exponent = -3/4,
mass = 100,
temperature = 273.15 + 20,
E = E_carrying_capacity
)