es_from_beta_std {metaConvert} | R Documentation |
Convert a standardized regression coefficient and the standard deviation of the dependent variable into several effect size measures
Description
Convert a standardized regression coefficient and the standard deviation of the dependent variable into several effect size measures
Usage
es_from_beta_std(
beta_std,
sd_dv,
n_exp,
n_nexp,
smd_to_cor = "viechtbauer",
reverse_beta_std
)
Arguments
beta_std |
a standardized regression coefficient value (binary predictor, no other covariables in the model) |
sd_dv |
standard deviation of the dependent variable |
n_exp |
number of participants in the experimental/exposed group. |
n_nexp |
number of participants in the non-experimental/non-exposed group. |
smd_to_cor |
formula used to convert the |
reverse_beta_std |
a logical value indicating whether the direction of the generated effect sizes should be flipped. |
Details
This function converts a standardized linear regression coefficient (coming from a model with only one binary predictor), into an unstandardized linear regression coefficient.
sd\_dummy = \sqrt{\frac{n_exp - (n_exp^2 / (n_exp + n_nexp))}{(n_exp + n_nexp - 1)}}
unstd\_beta = beta\_std * \frac{sd\_dv}{sd\_dummy}
Calculations of the es_from_beta_unstd
functions are then used.
Value
This function estimates and converts between several effect size measures.
natural effect size measure | D + G |
converted effect size measure | OR + R + Z |
required input data | See 'Section 13. (Un-)Standardized regression coefficient' |
https://metaconvert.org/html/input.html | |
References
Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Sage Publications, Inc.
Examples
es_from_beta_std(beta_std = 2.1, sd_dv = 0.98, n_exp = 20, n_nexp = 22)