clust.suite {metaCluster} | R Documentation |
Determination of Suitable Clustering Algorithm for Metagenomics Data
Description
This function will give the best clustering algorithm for a given metagenomics data based on silhouette index for kmeans clustering, kmedoids clustering, fuzzy kmeans clsutering, DBSCAN clustering and hierarchical clsutering.
Usage
clust.suite(data, k, eps, minpts)
Arguments
data |
Feature matrix consisting of different genomic features.Each row represents features corresponding to a particular individual or contig and each column represents different genomic features. |
k |
Optimum number of clusters |
eps |
Radius value for DBSCAN clustering |
minpts |
Minimum point value of DBSCAN clustering |
Value
kmeans |
Output of kmeans clustering |
kmedoids |
Output of kmedoids clustering |
fkmeans |
Output of fuzzy kmeans clustering |
dbscan |
Output of dbscan clustering |
hierarchical |
Output of hierarchical clustering |
silhouette.kmeans |
Silhouette plot of kmeans clustering |
silhouette.kmedoids |
Silhouette plot of kmedoids clustering |
silhouette.fkmeans |
Silhouette plot of fuzzy kmeans clustering |
silhouette.dbscan |
Silhouette plot of dbscan clustering |
silhouette.hierarchical |
Silhouette plot of hierarchical clustering |
best.clustering.method |
Best clustering algorithm based on silhouette index |
silhouette.summary |
Average silhouette width of each clustering algorithm |
Author(s)
Dipro Sinha <diprosinha@gmail.com>,Sayanti Guha Majumdar, Anu Sharma, Dwijesh Chandra Mishra
Examples
library(metaCluster)
data(metafeatures)
result <- clust.suite(metafeatures[1:200,],8,0.5,10)