AUC {meta4diag} | R Documentation |
A function that calculate the area under summary receiver operating chracteristic line.
Description
Takes a meta4diag
object produced by meta4diag()
and calculate the area under summary receiver operating chracteristic line.
Usage
## S3 method for class 'meta4diag'
AUC(x, sroc.type=1, est.type="median", ...)
Arguments
x |
A |
est.type |
The estimates type used to make SROC plot. Options are "mean" and "median". |
sroc.type |
A numerical value specifying the function used to make SROC line. Options are 1, 2, 3, 4, 5. When
When
When
When
When
|
... |
Arguments to be passes to methods. |
Details
The AUC()
returns an estimate of the area under the SROC curve. When the number of samples is given in the makeObject()
or meta4diag()
, the uncertainty of AUC is estimated. Otherwise only the estimates of the AUC respect to the estimated SROC curve is returned.
Value
A vector containing the "est", which indicate the estimates of AUC of the estimated SROC vurve and "mean" and "sd" (plus, possibly quantiles) of AUC if nsample
is given.
Author(s)
Jingyi Guo and Andrea Riebler
References
Chappell F, Raab G, Wardlaw J (2009). "When are Summary ROC Curves Appropriate for Diagnostic Meta-analyses?" Statistics in Medicine, 28(21), 2653-2668.
Arends et al.(2008) "Bivariate random effects meta-analysis of ROC curves." Medical Decision Making, 28(5), 621-638.
See Also
SROC, meta4diag
Examples
## Not run:
if(requireNamespace("INLA", quietly = TRUE)){
require("INLA", quietly = TRUE)
data(Catheter)
res <- meta4diag(data = Catheter, nsample=1000)
AUC(res, est.type="mean")
}
## End(Not run)