mgForward {memgene} | R Documentation |
Forward selection of MEM eigenvectors against genetic distance data
Description
This function calls mgRDA
repeatedly in order to identify a reduced
set of all MEM eigenvectors (i.e. spatial patterns).
Usage
mgForward(genD, vectorsMEM, perm = 100, alpha = 0.05)
Arguments
genD |
A symmetrical distance matrix giving the genetic distances among individual genotypes or populations |
vectorsMEM |
A matrix giving a set of MEM eigenvectors |
perm |
The number of permutations in a randomization test |
alpha |
The 1-alpha level for forward selection |
Details
A wrapper for mgRDA
designed for forward selection
Value
A list
$selectedMEM
gives the indices of the input vectorsMEM
that
were selected and can then be used in a call to mgRDA(..., full=TRUE)
Author(s)
Pedro Peres-Neto (peres-neto.pedro@uqam.ca)
Paul Galpern (pgalpern@ucalgary.ca)
Examples
## Not run:
## Prepare the radial data for analysis
radialData <- read.csv(system.file("extdata/radial.csv", package="memgene"))
radialGen <- radialData[, -c(1,2)]
radialXY <- radialData[, 1:2]
if (require(adegenet)) {
radialDM <- codomToPropShared(radialGen)
} else {
stop("adegenent package required to produce genetic distance matrix in example.")
}
## Find MEM eigenvectors given sampling locations
## by first finding the Euclidean distance matrix
radialEuclid <- dist(radialXY)
radialMEM <- mgMEM(radialEuclid)
## Forward select significant MEM eigenvectors using RDA
## Positive MEM eigenvectors (positive spatial autocorrelation) first
radialPositive <- mgForward(radialDM,
radialMEM$vectorsMEM[ , radialMEM$valuesMEM > 0])
## Negative MEM eigenvectors (negative spatial autocorrelation) second
radialNegative <- mgForward(radialDM,
radialMEM$vectorsMEM[ , radialMEM$valuesMEM < 0])
## Summarize the selected MEM eigenvectors
allSelected <- cbind(radialMEM$vectorsMEM[, radialMEM$valuesMEM > 0][
, na.omit(radialPositive$selectedMEM)],
radialMEM$vectorsMEM[, radialMEM$valuesMEM < 0][
, na.omit(radialNegative$selectedMEM)])
## Use the selected MEM eigenvectors in a final model
radialAnalysis <- mgRDA(radialDM, allSelected, full=TRUE)
## End(Not run)
[Package memgene version 1.0.2 Index]