mdmb_regression {mdmb} | R Documentation |
Several Regression Models with Prior Distributions and Sampling Weights
Description
Several regression functions which allow for sampling weights and prior distributions.
The function yjt_regression
performs a linear regression in which the
response variable is transformed according to the Yeo-Johnson transformation
(Yeo & Johnson, 2000; see yjt_dist
) and the residuals are
distributed following the scaled t
distribution. The degrees of freedom
of the t
distribution can be fixed or estimated (est_df=TRUE
).
The function bct_regression
has same functionality like the
Yeo-Johnson transformation but employs a Box-Cox transformation
of the outcome variable.
The Yeo-Johnson transformation can be extended by a probit transformation
(probit=TRUE
) to cover the case of bounded variables on [0,1]
.
The function logistic_regression
performs logistic regression
for dichotomous data.
The function oprobit_regression
performs ordinal probit regression
for ordinal polytomous data.
Usage
#---- linear regression with Yeo-Johnson transformed scaled t distribution
yjt_regression(formula, data, weights=NULL, beta_init=NULL, beta_prior=NULL,
df=Inf, lambda_fixed=NULL, probit=FALSE, est_df=FALSE, df_min=0.5, df_max=100,
use_grad=2, h=1e-5, optimizer="optim", maxiter=300, control=NULL)
## S3 method for class 'yjt_regression'
coef(object, ...)
## S3 method for class 'yjt_regression'
logLik(object, ...)
## S3 method for class 'yjt_regression'
predict(object, newdata=NULL, trafo=TRUE, ...)
## S3 method for class 'yjt_regression'
summary(object, digits=4, file=NULL, ...)
## S3 method for class 'yjt_regression'
vcov(object, ...)
#---- linear regression with Box-Cox transformed scaled t distribution
bct_regression(formula, data, weights=NULL, beta_init=NULL, beta_prior=NULL,
df=Inf, lambda_fixed=NULL, est_df=FALSE, use_grad=2, h=1e-5,
optimizer="optim", maxiter=300, control=NULL)
## S3 method for class 'bct_regression'
coef(object, ...)
## S3 method for class 'bct_regression'
logLik(object, ...)
## S3 method for class 'bct_regression'
predict(object, newdata=NULL, trafo=TRUE, ...)
## S3 method for class 'bct_regression'
summary(object, digits=4, file=NULL, ...)
## S3 method for class 'bct_regression'
vcov(object, ...)
#---- logistic regression
logistic_regression(formula, data, weights=NULL, beta_init=NULL,
beta_prior=NULL, use_grad=2, h=1e-5, optimizer="optim", maxiter=300,
control=NULL)
## S3 method for class 'logistic_regression'
coef(object, ...)
## S3 method for class 'logistic_regression'
logLik(object, ...)
## S3 method for class 'logistic_regression'
predict(object, newdata=NULL, ...)
## S3 method for class 'logistic_regression'
summary(object, digits=4, file=NULL, ...)
## S3 method for class 'logistic_regression'
vcov(object, ...)
#---- ordinal probit regression
oprobit_regression(formula, data, weights=NULL, beta_init=NULL,
use_grad=2, h=1e-5, optimizer="optim", maxiter=300,
control=NULL, control_optim_fct=NULL)
## S3 method for class 'oprobit_regression'
coef(object, ...)
## S3 method for class 'oprobit_regression'
logLik(object, ...)
## S3 method for class 'oprobit_regression'
predict(object, newdata=NULL, ...)
## S3 method for class 'oprobit_regression'
summary(object, digits=4, file=NULL, ...)
## S3 method for class 'oprobit_regression'
vcov(object, ...)
Arguments
formula |
Formula |
data |
Data frame. The dependent variable must be coded as 0 and 1. |
weights |
Optional vector of sampling weights |
beta_init |
Optional vector of initial regression coefficients |
beta_prior |
Optional list containing priors of all parameters (see Examples for definition of this list). |
df |
Fixed degrees of freedom for scaled |
lambda_fixed |
Optional fixed value for |
probit |
Logical whether probit transformation should be employed for
bounded outcome in |
est_df |
Logical indicating whether degrees of freedom in
|
df_min |
Minimum value for estimated degrees of freedom |
df_max |
Maximum value for estimated degrees of freedom |
use_grad |
Computation method for gradients in |
h |
Numerical differentiation parameter. |
optimizer |
Type of optimizer to be chosen. Options are
|
maxiter |
Maximum number of iterations |
control |
Optional arguments to be passed to optimization function
( |
control_optim_fct |
Optional control argument for gradient in optimization |
object |
Object of class |
newdata |
Design matrix for |
trafo |
Logical indicating whether fitted values should be on the
transformed metric ( |
digits |
Number of digits for rounding |
file |
File name if the |
... |
Further arguments to be passed. |
Value
List containing values
coefficients |
Estimated regression coefficients |
vcov |
Estimated covariance matrix |
partable |
Parameter table |
y |
Vector of values of dependent variable |
Xdes |
Design matrix |
weights |
Sampling weights |
fitted.values |
Fitted values in metric of probabilities |
linear.predictor |
Fitted values in metric of logits |
loglike |
Log likelihood value |
logprior |
Log prior value |
logpost |
Log posterior value |
deviance |
Deviance |
loglike_case |
Case-wise likelihood |
ic |
Information criteria |
R2 |
Pseudo R-square value according to McKelvey and Zavoina |
Author(s)
Alexander Robitzsch
References
McKelvey, R., & Zavoina, W. (1975). A statistical model for the analysis of ordinal level dependent variables. Journal of Mathematical Sociology, 4(1), 103-120. doi:10.1080/0022250X.1975.9989847
Yeo, I.-K., & Johnson, R. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87(4), 954-959. doi:10.1093/biomet/87.4.954
See Also
See yjt_dist
or car::yjPower
for functions for the Yeo-Johnson transformation.
See stats::lm
and
stats::glm
for linear and logistic
regression models.
Examples
#############################################################################
# EXAMPLE 1: Simulated example logistic regression
#############################################################################
#--- simulate dataset
set.seed(986)
N <- 500
x <- stats::rnorm(N)
y <- 1*( stats::runif(N) < stats::plogis( -0.8 + 1.2 * x ) )
data <- data.frame( x=x, y=y )
#--- estimate logistic regression with mdmb::logistic_regression
mod1 <- mdmb::logistic_regression( y ~ x, data=data )
summary(mod1)
## Not run:
#--- estimate logistic regression with stats::glm
mod1b <- stats::glm( y ~ x, data=data, family="binomial")
summary(mod1b)
#--- estimate logistic regression with prior distributions
b0 <- list( "dnorm", list(mean=0, sd=100) ) # first parameter
b1 <- list( "dcauchy", list(location=0, scale=2.5) ) # second parameter
beta_priors <- list( b0, b1 ) # order in list defines priors for parameters
#* estimation
mod2 <- mdmb::logistic_regression( y ~ x, data=data, beta_prior=beta_priors )
summary(mod2)
#############################################################################
# EXAMPLE 2: Yeo-Johnson transformed scaled t regression
#############################################################################
#*** create simulated data
set.seed(9865)
n <- 1000
x <- stats::rnorm(n)
y <- .5 + 1*x + .7*stats::rt(n, df=8 )
y <- mdmb::yj_antitrafo( y, lambda=.5 )
dat <- data.frame( y=y, x=x )
# display data
graphics::hist(y)
#--- Model 1: fit regression model with transformed normal distribution (df=Inf)
mod1 <- mdmb::yjt_regression( y ~ x, data=dat )
summary(mod1)
#--- Model 2: fit regression model with transformed scaled t distribution (df=10)
mod2 <- mdmb::yjt_regression( y ~ x, data=dat, df=10)
summary(mod2)
#--- Model 3: fit regression model with transformed normal distribution (df=Inf)
# and fixed transformation parameter lambda of .5
mod3 <- mdmb::yjt_regression( y ~ x, data=dat, lambda_fixed=.5)
summary(mod3)
#--- Model 4: fit regression model with transformed normal distribution (df=Inf)
# and fixed transformation parameter lambda of 1
# -> This model corresponds to least squares regression
mod4 <- mdmb::yjt_regression( y ~ x, data=dat, lambda_fixed=1)
summary(mod4)
# fit with lm function
mod4b <- stats::lm( y ~ x, data=dat )
summary(mod4b)
#--- Model 5: fit regression model with estimated degrees of freedom
mod5 <- mdmb::yjt_regression( y ~ x, data=dat, est_df=TRUE)
summary(mod5)
#** compare log-likelihood values
logLik(mod1)
logLik(mod2)
logLik(mod3)
logLik(mod4)
logLik(mod4b)
logLik(mod5)
#############################################################################
# EXAMPLE 3: Regression with Box-Cox and Yeo-Johnson transformations
#############################################################################
#*** simulate data
set.seed(985)
n <- 1000
x <- stats::rnorm(n)
y <- .5 + 1*x + stats::rnorm(n, sd=.7 )
y <- mdmb::bc_antitrafo( y, lambda=.5 )
dat <- data.frame( y=y, x=x )
#--- Model 1: fit regression model with Box-Cox transformation
mod1 <- mdmb::bct_regression( y ~ x, data=dat )
summary(mod1)
#--- Model 2: fit regression model with Yeo-Johnson transformation
mod2 <- mdmb::yjt_regression( y ~ x, data=dat )
summary(mod2)
#--- compare fit
logLik(mod1)
logLik(mod2)
#############################################################################
# EXAMPLE 4: Ordinal probit regression
#############################################################################
#--- simulate data
set.seed(987)
N <- 1500
x <- stats::rnorm(N)
z <- stats::rnorm(N)
# regression coefficients
b0 <- -.5 ; b1 <- .6 ; b2 <- .1
# vector of thresholds
thresh <- c(-1, -.3, 1)
yast <- b0 + b1 * x + b2*z + stats::rnorm(N)
y <- as.numeric( cut( yast, c(-Inf,thresh,Inf) ) ) - 1
dat <- data.frame( x=x, y=y, z=z )
#--- probit regression
mod <- mdmb::oprobit_regression( formula=y ~ x + z + I(x*z), data=dat)
summary(mod)
## End(Not run)