tbt {mctq} | R Documentation |
Compute MCTQ total time in bed
Description
tbt()
computes the total time in bed for standard and shift versions of
the Munich ChronoType Questionnaire (MCTQ).
Usage
tbt(bt, gu)
Arguments
bt |
An |
gu |
An |
Details
Standard MCTQ functions were created following the guidelines in Roenneberg, Wirz-Justice, & Merrow (2003), Roenneberg, Allebrandt, Merrow, & Vetter (2012), and from The Worldwide Experimental Platform (theWeP, n.d.).
\mu
MCTQ functions were created following the guidelines in Ghotbi
et al. (2020), in addition to the guidelines used for the standard MCTQ.
MCTQ^{Shift}
functions were created following the
guidelines in Juda, Vetter, & Roenneberg (2013), in addition to the
guidelines used for the standard MCTQ.
See the References section to learn more.
Class requirements
The mctq
package works with a set of object classes specially created to
hold time values. These classes can be found in the
lubridate and hms
packages. Please refer to those package documentations to learn more about
them.
Rounding and fractional time
Some operations may produce an output with fractional time (e.g.,
"19538.3828571429s (~5.43 hours)"
, 01:15:44.505
). If you want, you
can round it with round_time()
.
Our recommendation is to avoid rounding, but, if you do, make sure that you only round your values after all computations are done. That way you avoid round-off errors.
Value
A Duration
object corresponding to the
vectorized difference between gu
and bt
in a circular time frame of 24
hours.
Guidelines
Roenneberg, Allebrandt, Merrow, & Vetter (2012), Juda, Vetter, & Roenneberg
(2013), and The Worldwide Experimental Platform (n.d.) guidelines for tbt()
(TBT
) computation are as follows.
Notes
This computation must be applied to each section of the questionnaire.
If you are visualizing this documentation in plain text, you may have some trouble understanding the equations. You can see this documentation on the package website.
For standard and micro versions of the MCTQ
TBT_{W/F} = GU_{W/F} - BT_{W/F}
Where:
-
TBT_{W/F}
= Total time in bed on work or work-free days. -
GU_{W/F}
= Local time of getting out of bed on work or work-free days. -
BT_{W/F}
= Local time of going to bed on work or work-free days ("I go to bed at ___ o'clock").
* W
= Workdays; F
= Work-free days.
For the shift version of the MCTQ
TBT_{W/F}^{M/E/N} = GU_{W/F}^{M/E/N} - BT_{W/F}^{M/E/N}
Where:
-
TBT_{W/F}^{M/E/N}
= Total time in bed between two days in a particular shift or between two free days after a particular shift. -
GU_{W/F}^{M/E/N}
= Local time of getting out of bed between two days in a particular shift or between two free days after a particular shift. -
BT_{W/F}^{M/E/N}
= Local time of going to bed between two days in a particular shift or between two free days after a particular shift ("I go to bed at ___ o'clock").
* W
= Workdays; F
= Work-free days, M
=
Morning shift; E
= Evening shift; N
= Night shift.
References
Ghotbi, N., Pilz, L. K., Winnebeck, E. C., Vetter, C., Zerbini, G., Lenssen,
D., Frighetto, G., Salamanca, M., Costa, R., Montagnese, S., & Roenneberg, T.
(2020). The \mu
MCTQ: an ultra-short version of the Munich ChronoType
Questionnaire. Journal of Biological Rhythms, 35(1), 98-110.
doi:10.1177/0748730419886986
Juda, M., Vetter, C., & Roenneberg, T. (2013). The Munich ChronoType
Questionnaire for shift-workers (MCTQ^{Shift}
). Journal of
Biological Rhythms, 28(2), 130-140. doi:10.1177/0748730412475041
Roenneberg T., Allebrandt K. V., Merrow M., & Vetter C. (2012). Social jetlag and obesity. Current Biology, 22(10), 939-43. doi:10.1016/j.cub.2012.03.038
Roenneberg, T., Wirz-Justice, A., & Merrow, M. (2003). Life between clocks: daily temporal patterns of human chronotypes. Journal of Biological Rhythms, 18(1), 80-90. doi:10.1177/0748730402239679
The Worldwide Experimental Platform (n.d.). MCTQ. https://www.thewep.org/documentations/mctq/
See Also
Other MCTQ functions:
fd()
,
gu()
,
le_week()
,
msf_sc()
,
msl()
,
napd()
,
sd24()
,
sd_overall()
,
sd_week()
,
sdu()
,
sjl_sc()
,
sjl_weighted()
,
sjl()
,
so()
Examples
## Scalar example
bt <- hms::parse_hm("22:10")
gu <- hms::parse_hm("06:15")
tbt(bt, gu)
#> [1] "29100s (~8.08 hours)" # Expected
bt <- hms::parse_hm("01:20")
gu <- hms::parse_hm("14:00")
tbt(bt, gu)
#> [1] "45600s (~12.67 hours)" # Expected
bt <- hms::as_hms(NA)
gu <- hms::parse_hm("07:20")
tbt(bt, gu)
#> [1] NA # Expected
## Vector example
bt <- c(hms::parse_hm("23:50"), hms::parse_hm("02:30"))
gu <- c(hms::parse_hm("09:30"), hms::parse_hm("11:25"))
tbt(bt, gu)
#> [1] "34800s (~9.67 hours)" "32100s (~8.92 hours)" # Expected