refInterval {mcradds} | R Documentation |
Calculate Reference Interval and Corresponding Confidence Interval
Description
This function is used to establish the reference interval for target population with parametric, non-parametric and robust methods that follows the CLSI-EP28A3 and NMPA guideline. In additional, it also provides the corresponding confidence interval for lower/upper reference limit if needed. Given that outliers should be identified beforehand, Tukey and Dixon methods can be applied depending on distribution of the data.
Usage
refInterval(
x,
out_method = c("doxin", "tukey"),
out_rm = FALSE,
RI_method = c("parametric", "nonparametric", "robust"),
CI_method = c("parametric", "nonparametric", "boot"),
refLevel = 0.95,
bootCI = c("perc", "norm", "basic", "stud", "bca"),
confLevel = 0.9,
rng.seed = NULL,
tol = 1e-06,
R = 10000
)
Arguments
x |
( |
out_method |
( |
out_rm |
( |
RI_method |
( |
CI_method |
( |
refLevel |
( |
bootCI |
( |
confLevel |
( |
rng.seed |
( |
tol |
( |
R |
( |
Value
A RefInt
object contains relevant results in establishing of reference interval.
Note
There are some conditions of use to be aware of:
If parametric method is used to calculate reference interval, confidence interval should be the same method as well.
If non-parametric method is used to calculate the reference interval and the sample size is up to 120 observations, the non-parametric is suggested for confidence interval. Otherwise if the sample size is below to 120, the bootstrap method is the better choice. Beside the non-parametric method for confidence interval only allows the
refLevel=0.95
andconfLevel=0.9
arguments, if not the bootstrap methods will be used automatically.If robust method is used to calculate the reference interval, the method for confidence interval must be bootstrap.
Examples
data("calcium")
x <- calcium$Value
refInterval(x, RI_method = "parametric", CI_method = "parametric")
refInterval(x, RI_method = "nonparametric", CI_method = "nonparametric")
refInterval(x, RI_method = "robust", CI_method = "boot", R = 1000)