mcprofile {mcprofile} | R Documentation |
Construction of Multiple Contrast Profiles
Description
Calculates signed root deviance profiles given a glm
or lm
object. The profiled parameters of interest are defined by providing a contrast matrix.
Usage
mcprofile(object, CM, control = mcprofileControl(), grid = NULL)
## S3 method for class 'glm'
mcprofile(object, CM, control = mcprofileControl(),
grid = NULL)
## S3 method for class 'lm'
mcprofile(object, CM, control = mcprofileControl(),
grid = NULL)
Arguments
object |
|
CM |
A contrast matrix for the definition of parameter linear combinations ( |
control |
A list with control arguments. See |
grid |
A matrix or list with profile support coordinates. Each column of the matrix or slot in a list corresponds to a row in the contrast matrix, each row of the grid matrix or element of a numeric vector in each list slot corresponds to a candidate of the contrast parameter. If NULL (default), a grid is found automatically similar to function |
Details
The profiles are calculates separately for each row of the contrast matrix. The profiles are calculated by constrained IRWLS optimization, implemented in function orglm
, using the quadratic programming algorithm of package quadprog
.
Value
An object of class mcprofile. The slot srdp
contains the profiled signed root deviance statistics. The optpar
slot contains a matrix with profiled parameter estimates.
See Also
profile.glm
, glht
, contrMat
, confint.mcprofile
, summary.mcprofile
, solve.QP
Examples
#######################################
## cell transformation assay example ##
#######################################
str(cta)
## change class of cta$conc into factor
cta$concf <- factor(cta$conc, levels=unique(cta$conc))
ggplot(cta, aes(y=foci, x=concf)) +
geom_boxplot() +
geom_dotplot(binaxis = "y", stackdir = "center", binwidth = 0.2) +
xlab("concentration")
# glm fit assuming a Poisson distribution for foci counts
# parameter estimation on the log link
# removing the intercept
fm <- glm(foci ~ concf-1, data=cta, family=poisson(link="log"))
### Comparing each dose to the control by Dunnett-type comparisons
# Constructing contrast matrix
library(multcomp)
CM <- contrMat(table(cta$concf), type="Dunnett")
# calculating signed root deviance profiles
(dmcp <- mcprofile(fm, CM))
# plot profiles
plot(dmcp)
# confidence intervals
(ci <- confint(dmcp))
plot(ci)